日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方體的棱長(zhǎng)為2,PBC的中點(diǎn),Q為線段上的動(dòng)點(diǎn),過(guò)點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是______(寫出所有正確命題的編號(hào)).

          ①當(dāng)時(shí),S為四邊形;②當(dāng)時(shí),S為等腰梯形;③當(dāng)時(shí),S的交點(diǎn)R滿足;④當(dāng)時(shí),S為五邊形;⑤當(dāng)時(shí),S的面積為

          【答案】①②④

          【解析】

          利用空間幾何元素的位置關(guān)系和截面的性質(zhì)逐一分析推理判斷每一個(gè)命題的真假得解.

          對(duì)于①,由圖1知,

          當(dāng)點(diǎn)QC移動(dòng)時(shí),滿足0CQ1,只需在DD1上取點(diǎn)M,且滿足AMPQ,

          則截面圖形為四邊形APQM,∴①正確;

          對(duì)于②,當(dāng)CQ=1時(shí),即QCC1中點(diǎn),此時(shí)可得PQAD1,AP=QD1=

          可得截面APQD1為等腰梯形,∴②正確;

          對(duì)于③,當(dāng)CQ=時(shí),如圖2所示,

          延長(zhǎng)DD1N,使D1N=1,連接ANA1D1S,連接NQC1D1R,連接SR,

          可證ANPQ,由△NRD1∽△QRC1,可得C1RD1R=C1QD1N=12,可得C1R=D1R=,∴③錯(cuò)誤;

          對(duì)于④,當(dāng)時(shí),只需點(diǎn)Q上移,此時(shí)的截面形狀仍然上圖所示的APQRS,是五邊形,④正確;

          對(duì)于⑤,當(dāng)CQ=2時(shí),QC1重合,取A1D1的中點(diǎn)F,連接AF,可證PC1AF,且PC1=AF,

          可知截面為APC1F為菱形,且面積為AC1PF=2,⑤錯(cuò)誤;

          綜上可得:正確命題的序號(hào)為①②④.

          故答案為:①②④.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司對(duì)營(yíng)銷人員有如下規(guī)定:

          ①年銷售額 (萬(wàn)元)在8萬(wàn)元以下,沒(méi)有獎(jiǎng)金;

          ②年銷售額 (萬(wàn)元), 時(shí),獎(jiǎng)金為萬(wàn)元,且, ,且年銷售額越大,獎(jiǎng)金越多;

          ③年銷售額超過(guò)64萬(wàn)元,按年銷售額的10%發(fā)獎(jiǎng)金.

          (1)求獎(jiǎng)金y關(guān)于x的函數(shù)解析式;

          (2)若某營(yíng)銷人員爭(zhēng)取獎(jiǎng)金 (萬(wàn)元),則年銷售額 (萬(wàn)元)在什么范圍內(nèi)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】濟(jì)南新舊動(dòng)能轉(zhuǎn)換先行區(qū),承載著濟(jì)南從“大明湖時(shí)代”邁向“黃河時(shí)代”的夢(mèng)想,肩負(fù)著山東省新舊動(dòng)能轉(zhuǎn)換先行先試的重任,是全國(guó)新舊動(dòng)能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標(biāo),通過(guò)開(kāi)放平臺(tái)匯聚創(chuàng)新要素,堅(jiān)持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機(jī)器人制造企業(yè)有意落戶先行區(qū),對(duì)市場(chǎng)進(jìn)行了可行性分析,如果全年固定成本共需2000(萬(wàn)元),每年生產(chǎn)機(jī)器人(百個(gè)),需另投人成本(萬(wàn)元),且,由市場(chǎng)調(diào)研知,每個(gè)機(jī)器人售價(jià)6萬(wàn)元,且全年生產(chǎn)的機(jī)器人當(dāng)年能全部銷售完.

          (1)求年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(百個(gè))的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)

          (2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤(rùn)超過(guò)2000(萬(wàn)元)時(shí),才選擇落戶新舊動(dòng)能轉(zhuǎn)換先行區(qū).請(qǐng)問(wèn)該企業(yè)能否落戶先行區(qū),并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,函數(shù)

          1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;

          2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè),函數(shù),函數(shù).

          (1)討論的單調(diào)性;

          (2)當(dāng)時(shí),不等式恒成立,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

          某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

          性別

          選考方案確定情況

          物理

          化學(xué)

          生物

          歷史

          地理

          政治

          男生

          選考方案確定的有8人

          8

          8

          4

          2

          1

          1

          選考方案待確定的有6人

          4

          3

          0

          1

          0

          0

          女生

          選考方案確定的有10人

          8

          9

          6

          3

          3

          1

          選考方案待確定的有6人

          5

          4

          1

          0

          0

          1

          (Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

          (Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

          (Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下面六個(gè)句子中,錯(cuò)誤的題號(hào)是________.

          ①周期函數(shù)必有最小正周期;

          ②若至少有一個(gè)為;

          為第三象限角,則

          ④若向量的夾角為銳角,則

          ⑤存在,,使成立;

          ⑥在中,O內(nèi)一點(diǎn),且,則O的重心.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)列 滿足: 的前項(xiàng)和為,并規(guī)定.定義集合 ,

          (Ⅰ)對(duì)數(shù)列 , , , ,求集合;

          (Ⅱ)若集合 ,證明: ;

          (Ⅲ)給定正整數(shù)對(duì)所有滿足的數(shù)列,求集合的元素個(gè)數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】進(jìn)入12月以來(lái),某地區(qū)為了防止出現(xiàn)重污染天氣,堅(jiān)持保民生、保藍(lán)天,嚴(yán)格落實(shí)機(jī)動(dòng)車限行等一系列“管控令”.該地區(qū)交通管理部門為了了解市民對(duì)“單雙號(hào)限行”的贊同情況,隨機(jī)采訪了220名市民,將他們的意見(jiàn)和是否擁有私家車情況進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:

          贊同限行

          不贊同限行

          合計(jì)

          沒(méi)有私家車

          90

          20

          110

          有私家車

          70

          40

          110

          合計(jì)

          160

          60

          220

          (1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“是否贊同限行與是否擁有私家車”有關(guān);

          (2)為了了解限行之后是否對(duì)交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再?gòu)倪@6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少抽到1名“沒(méi)有私家車”人員的概率.

          附:.

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習(xí)冊(cè)答案