日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

          (1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

          (2)若直線與曲線,的交點(diǎn)分別為、異于原點(diǎn)),當(dāng)斜率時(shí),求的最小值.

          【答案】(1)的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程.(2)

          【解析】

          (1)消去參數(shù),可得曲線的直角坐標(biāo)方程,再利用極坐標(biāo)與直角坐標(biāo)的互化,即可求解.

          (2)解法1:設(shè)直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,得,得出,利用基本不等式,即可求解;

          解法2:設(shè)直線的極坐標(biāo)方程為,分別代入曲線,的極坐標(biāo)方程,得, ,得出,即可基本不等式,即可求解.

          (1) 由題曲線的參數(shù)方程為為參數(shù)),消去參數(shù),

          可得曲線的直角坐標(biāo)方程為,即,

          則曲線的極坐標(biāo)方程為,即

          又因?yàn)榍的極坐標(biāo)方程為,即,

          根據(jù),代入即可求解曲線的直角坐標(biāo)方程.

          (2)解法1:設(shè)直線的傾斜角為,

          則直線的參數(shù)方程為為參數(shù),),

          把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,

          解得,

          把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,

          解得,,

          ,即,,,

          ,

          當(dāng)且僅當(dāng),即時(shí)取等號(hào),

          的最小值為.

          解法2:設(shè)直線的極坐標(biāo)方程為),

          代入曲線的極坐標(biāo)方程,得,,

          把直線的參數(shù)方程代入曲線的極坐標(biāo)方程得:,

          ,即,,

          曲線的參,即,

          ,,

          當(dāng)且僅當(dāng),即時(shí)取等號(hào),

          的最小值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線

          (1)求曲線的方程;

          (2)若直線與曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:

          現(xiàn)隨機(jī)抽取了100為會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:

          假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問(wèn)題:

          1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率

          2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤(rùn);

          3)假設(shè)每個(gè)會(huì)員每星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會(huì)員中隨機(jī)抽取兩位,記從這兩位會(huì)員的消費(fèi)獲得的平均利潤(rùn)之差的絕對(duì)值為,求的分布列及數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

          fx)是周期函數(shù);②fx)的圖象關(guān)于直線x2kπkZ)對(duì)稱,

          fx)在(﹣π,0)上沒(méi)有零點(diǎn);④fx)的值域?yàn)?/span>,

          其中正確結(jié)論的個(gè)數(shù)為(

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知過(guò)點(diǎn)P4,0)的動(dòng)直線與拋物線C交于點(diǎn)AB,且(點(diǎn)O為坐標(biāo)原點(diǎn)).

          1)求拋物線C的方程;

          2)當(dāng)直線AB變動(dòng)時(shí),x軸上是否存在點(diǎn)Q使得點(diǎn)P到直線AQ,BQ的距離相等,若存在,求出點(diǎn)Q坐標(biāo),若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,圓臺(tái)的軸截面為等腰梯形圓臺(tái)的側(cè)面積為.若點(diǎn)分別為圓上的動(dòng)點(diǎn),且點(diǎn)在平面的同側(cè).

          1)求證:;

          2)若,則當(dāng)三棱錐的體積取最大值時(shí),求多面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,圓臺(tái)的軸截面為等腰梯形,圓臺(tái)的側(cè)面積為.若點(diǎn)分別為圓上的動(dòng)點(diǎn),且點(diǎn)在平面的同側(cè).

          1)求證:;

          2)若,則當(dāng)三棱錐的體積取最大值時(shí),求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】馬林梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是(

          A.3B.4C.5D.6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)拋物線Cy2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為lAB為過(guò)焦點(diǎn)F且垂直于x軸的拋物線C的弦,已知以AB為直徑的圓經(jīng)過(guò)點(diǎn)(-10).

          1)求p的值及該圓的方程;

          2)設(shè)Ml上任意一點(diǎn),過(guò)點(diǎn)MC的切線,切點(diǎn)為N,證明:MFNF.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案