日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知F1F2為橢圓C的左、右焦點(diǎn),橢圓C過(guò)點(diǎn)M,且MF2F1F2.

          1)求橢圓C的方程;

          2)經(jīng)過(guò)點(diǎn)P20)的直線交橢圓CA,B兩點(diǎn),若存在點(diǎn)Qm0),使得|QA||QB|.

          ①求實(shí)數(shù)m的取值范圍:

          ②若線段F1A的垂直平分線過(guò)點(diǎn)Q,求實(shí)數(shù)m的值.

          【答案】1y212)①m[0)②

          【解析】

          1)由橢圓過(guò)M點(diǎn),及且MF2F1F2,可得c1,求得a,b的值,求出橢圓的方程;

          2)①設(shè)直線AB的方程與橢圓聯(lián)立,求出兩根之和,可得AB的中點(diǎn)N的坐標(biāo),由|QA||QB|.可得直線ABQN,可得斜率之積為﹣1,可得m的表達(dá)式m,進(jìn)而可得m的范圍;

          ②由題意|QF1||QA|QB|,在以為原心,為半徑的圓上,再與橢圓方程聯(lián)立,由根與系數(shù)的關(guān)系列式化簡(jiǎn),求出m的值.

          解:(1)因?yàn)闄E圓過(guò)M1,),MF2F1F2,

          所以解得:a22,b21,所以橢圓的方程為:y21

          2)設(shè)直線的方程為:ykx2),

          代入橢圓的方程,整理可得:(1+2k2x28k2x+8k220,

          因?yàn)橹本l與橢圓C由兩個(gè)交點(diǎn),所以64k441+2k2)(8k22)>0

          解得2k21;

          設(shè)Ax1,y1),Bx2,y2),則有x1+x2x1x2,

          ①設(shè)AB中點(diǎn)為Mx0,y0),

          則有x0,y0kx02,

          當(dāng)k0時(shí),因?yàn)?/span>|QA||QB|,∴QMl,

          kQMkk=﹣1,解得m

          m1∈(0,),

          當(dāng)k0,可得m0

          綜上所述:m[0,.

          ②由題意|QF1||QA|QB|,且F1(﹣10),

          ,整理可得:x24mx4m0,

          所以x1x2也是此方程的兩個(gè)根,所以x1+x24mx1x2=﹣4m,

          所以,解得k2,所以m.

          所以m的值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱中,平面,四邊形為菱形.

          (Ⅰ)證明:平面;

          (Ⅱ)若,二面角的余弦值為,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,海岸公路MN的北方有一個(gè)小島A(大小忽略不計(jì))盛產(chǎn)海產(chǎn)品,在公路MNB處有一個(gè)海產(chǎn)品集散中心,點(diǎn)CB的正西方向10處,,,計(jì)劃開(kāi)辟一條運(yùn)輸線將小島的海產(chǎn)品運(yùn)送到集散中心.現(xiàn)有兩種方案:①沿線段AB開(kāi)辟海上航線:②在海岸公路MN上選一點(diǎn)P建一個(gè)碼頭,先從海上運(yùn)到碼頭,再公路MN運(yùn)送到集散中心.已知海上運(yùn)輸、岸上運(yùn)輸費(fèi)用分別為400/、200/.

          1)求方案①的運(yùn)輸費(fèi)用;

          2)請(qǐng)確定P點(diǎn)的位置,使得按方案②運(yùn)送時(shí)運(yùn)輸費(fèi)用最低?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)求證:當(dāng)時(shí),的圖象位于直線上方;

          (Ⅱ)設(shè)函數(shù),若曲線在點(diǎn)處的切線與軸平行,且在點(diǎn)處的切線與直線平行(為坐標(biāo)原點(diǎn)),求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義在R上的偶函數(shù)fx)在(﹣∞,0]上單調(diào)遞增,且f(﹣1)=﹣1.fx1+10,則x的取值范圍是_____;設(shè)函數(shù)若方程fgx))+10有且只有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線的左右焦點(diǎn)分別為,的周長(zhǎng)為12

          1)求點(diǎn)的軌跡的方程.

          2)已知點(diǎn),是否存在過(guò)點(diǎn)的直線與曲線交于不同的兩點(diǎn),使得,若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).則下面結(jié)論正確的是(

          A.是奇函數(shù)B.上為增函數(shù)

          C.,則D.,則

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinθ2

          1M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;

          2)曲線C2上兩點(diǎn)與點(diǎn)Bρ2,α),求△OAB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】

          在四棱錐中,側(cè)面底面,中點(diǎn),底面是直角梯形,,=90°,,

          I)求證:平面;

          II)求證:平面;

          III)設(shè)為側(cè)棱上一點(diǎn),,試確定的值,使得二面角45°

          查看答案和解析>>

          同步練習(xí)冊(cè)答案