日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 三題中任選兩題作答
          (1)(2011年江蘇高考)已知矩陣,向量,求向量α,使得A2α=β
          (2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為,若直線l過點(diǎn)P,且傾斜角為,圓C以M為圓心、4為半徑.
          ①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
          (3)若正數(shù)a,b,c滿足a+b+c=1,求的最小值.
          【答案】分析:(1)設(shè)向量=,由A2α=β,利用矩陣的運(yùn)算法則,用待定系數(shù)法可得x 和 y 的值,從而求得向量
          (2)①根據(jù)題意直接求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
          ②先化直線l的參數(shù)方程為普通方程,求出圓心坐標(biāo),用圓心的直線距離和半徑比較可知位置關(guān)系.
          (3)利用柯西不等式,即可求得的最小值.
          解答:解:(1)、A2==,設(shè)向量=,由 A2= 可得
          =,
          ,解得 x=-1,y=2,
          ∴向量=
          (2)①直線l的參數(shù)方程為,(t為參數(shù))
          圓C的極坐標(biāo)方程為ρ=8sinθ.(6分)
          ②因?yàn)镸(4,)對應(yīng)的直角坐標(biāo)為(0,4)
          直線l化為普通方程為x-y-5-=0
          圓心到l的距離d==>4,
          所以直線l與圓C相離.(10分)
          (3)∵正數(shù)a,b,c滿足a+b+c=1,
          ∴()[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,
          ≥1
          當(dāng)且僅當(dāng)a=b=c=時,取等號
          ∴當(dāng)a=b=c=時,的最小值為1.
          點(diǎn)評:本題考查圓與圓的位置關(guān)系,參數(shù)方程與普通方程的互化,矩陣的運(yùn)算法則,絕對值不等式的解法.第(3)小題考查求最小值,解題的關(guān)鍵是利用柯西不等式進(jìn)行求解,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)三選一題(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
          A(幾何證明選講)如圖,⊙O的兩條弦AB,CD相交于圓內(nèi)一點(diǎn)P,若PA=PB,PC=2,PD=8,OP=4,則該圓的半徑長為
           

          B(坐標(biāo)系與參數(shù)方程)曲線C1
          x=1+cosθ 
          y=sinθ 
          (θ為參數(shù))
          上的點(diǎn)到曲線C2
          x=-2
          2
          +
          1
          2
          t
          y=1-
          1
          2
          t
          (t為參數(shù))
          上的點(diǎn)的最短離為
           

          C(不等式選講)不等式|2x-1|-|x-2|<0的解集為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          三題中任選兩題作答
          (1)(2011年江蘇高考)已知矩陣A=
          11
          21
          ,向量β=
          1
          2
          ,求向量α,使得A2α=β
          (2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
          π
          2
          )
          ,若直線l過點(diǎn)P,且傾斜角為
          π
          3
          ,圓C以M為圓心、4為半徑.
          ①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
          (3)若正數(shù)a,b,c滿足a+b+c=1,求
          1
          3a+2
          +
          1
          3b+2
          +
          1
          3c+2
          的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第二次質(zhì)檢理科數(shù)學(xué)復(fù)習(xí)卷(一) 題型:解答題

          三題中任選兩題作答

          (1)(2011年江蘇高考)已知矩陣,向量,求向量,使得

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          三題中任選兩題作答
          (1)(2011年江蘇高考)已知矩陣A=
          11
          21
          ,向量β=
          1
          2
          ,求向量α,使得A2α=β
          (2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
          π
          2
          )
          ,若直線l過點(diǎn)P,且傾斜角為
          π
          3
          ,圓C以M為圓心、4為半徑.
          ①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
          (3)若正數(shù)a,b,c滿足a+b+c=1,求
          1
          3a+2
          +
          1
          3b+2
          +
          1
          3c+2
          的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案