日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(e為自然對(duì)數(shù)的底數(shù)).
          (1)求F(x)=h(x)-φ(x)的極值;
          (2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說明理由.
          【答案】分析:(1)由已知中函數(shù)f(x)和φ(x)的解析式,求出函數(shù)F(x)的解析式,根據(jù)求導(dǎo)公式,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性并求極值
          (2)由(1)可知,函數(shù)f(x)和φ(x)的圖象在(,e)處相交,即f(x)和φ(x)若存在隔離直線,那么該直線必過這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為k.則隔離直線方程為y-e=k(x-),即y=kx-k+e,根據(jù)隔離直線的定義,構(gòu)造方程,可求出k值,進(jìn)而得到隔離直線方程.
          解答:解:(1)∵F(x)=f(x)-φ(x)=x2-2elnx(x>0),
          ∴F′(x)=2x-==
          令F′(x)=0,得x=,
          當(dāng)0<x<時(shí),F(xiàn)′(x)<0,x>時(shí),F(xiàn)′(x)>0
          故當(dāng)x=時(shí),F(xiàn)(x)取到最小值,最小值是0
          (2)由(1)可知,函數(shù)f(x)和φ(x)的圖象在(,e)處相交,
          因此存在f(x)和φ(x)的隔離直線,那么該直線過這個(gè)公共點(diǎn),
          設(shè)隔離直線的斜率為k.則隔離直線方程為y-e=k(x-,即y=kx-k+e
          由f(x)≥kx-k+e(x∈R),可得x2-kx+k-e≥0當(dāng)x∈R恒成立,
          則△=k2-4k+4e=(k-22≤0,
          ∴k=2,此時(shí)直線方程為:y=2x-e,
          下面證明φ(x)≤2x-eexx>0時(shí)恒成立
          令G(x)=2
          x-e-φ(x)=2x-e-2elnx,
          G′(x)=2-=(2x-2c)/x=2(x-)/x,
          當(dāng)x=時(shí),G′(X)=0,當(dāng)0<x<時(shí)G′(x)>0,
          則當(dāng)x=時(shí),G(x)取到最小值,極小值是0,也是最小值.
          所以G(x)=2x-e-g(x)≥0,則φ(x)≤2x-e當(dāng)x>0時(shí)恒成立.
          ∴函數(shù)f(x)和φ(x)存在唯一的隔離直線y=2x-e
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的求導(dǎo),利用導(dǎo)數(shù)求最值,屬于中檔題,主要做題要仔細(xì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(e為自然對(duì)數(shù)的底數(shù)).
          (1)求F(x)=h(x)-φ(x)的極值;
          (2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若存在實(shí)常數(shù)k和b,使函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x恒有:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx,則可推知h(x),φ(x)的“隔離直線”方程為
          y=2
          e
          x-e
          y=2
          e
          x-e

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數(shù)h(x)=x2,m(x)=2elnx(e為自然對(duì)數(shù)的底數(shù)),φ(x)=x-2,d(x)=-1.
          有下列命題:
          ①f(x)=h(x)-m(x)在x∈(0,
          e
          )
          遞減;
          ②h(x)和d(x)存在唯一的“隔離直線”;
          ③h(x)和φ(x)存在“隔離直線”y=kx+b,且b的最大值為-
          1
          4

          ④函數(shù)h(x)和m(x)存在唯一的隔離直線y=2
          e
          x-e

          其中真命題的個(gè)數(shù)( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省廣州市執(zhí)信中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(e為自然對(duì)數(shù)的底數(shù)).
          (1)求F(x)=h(x)-φ(x)的極值;
          (2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三12月練習(xí)數(shù)學(xué)試卷 題型:填空題

          若存在實(shí)常數(shù)k和b,使函數(shù)對(duì)其定義域上的任意實(shí)數(shù)x恒有:

          ,則稱直線 的“隔離直線”。

          已知,則可推知的“隔離直線”方程為   ▲     

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案