日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=log2(x+1),當(dāng)點(diǎn) (x,y) 是函數(shù)y=f (x) 圖象上的點(diǎn)時(shí),點(diǎn)是函數(shù)y=g(x) 圖象上的點(diǎn).
          (1)寫出函數(shù)y=g (x) 的表達(dá)式;
          (2)當(dāng)g(x)-f (x)≥0時(shí),求x的取值范圍;
          (3)當(dāng)x在 (2)所給范圍內(nèi)取值時(shí),求g(x)-f(x)的最大值.
          【答案】分析:(1)令 =X,=Y,由題設(shè)條件知 Y=log2(3X+1),再由(X,Y)是函數(shù)y=g(x)的圖象上的點(diǎn),即可得到函數(shù)y=g(x)的解析式.
          (2)由題意知 .由對(duì)數(shù)函數(shù)的性質(zhì)可得 ,解不等式組即可得到使g(x)>f(x)的x的取值范圍.
          (3)由題設(shè)條件知 .由此可知結(jié)合基本不等式即可求出g(x)-f(x)在[0,1]上的最大值.
          解答:解:(1)令X=,Y=,
          ∴x=3X,y=2Y,
          ∵點(diǎn) (x,y) 是函數(shù)y=f (x) 圖象上,
          ∴2Y=log2(3X+1),
          即Y=log2(3X+1),
          ∴g (x)=log2(3x+1)(x>-);
          (2)由g(x)-f (x)≥0,得log2(3x+1)-log2(x+1)≥0,
          ,
          解得0≤x≤1;
          ∴x的取值范圍為0≤x≤1;
          (3)∵因?yàn)?≤x≤1,
          所以
          當(dāng)且僅當(dāng)3x+1=2時(shí),即 x=時(shí)等號(hào)成立,
          故g(x)-f(x)在[0,1]上的最大值為 =log23-
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,其中(1)中求解析式是坐標(biāo)法中的“點(diǎn)隨點(diǎn)動(dòng)”問題,(2)中關(guān)鍵是根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)構(gòu)造關(guān)于x的不等式組,(3)的關(guān)鍵是根據(jù)基本不等式,求出真數(shù)部分的最大值,進(jìn)而根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性,得到y(tǒng)=g(x)-f(x)的最大值.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對(duì)任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案