【題目】若點(diǎn)在平面
外,過點(diǎn)
作面
的垂線,則稱垂足
為點(diǎn)
在平面
內(nèi)的正投影,記為
.如圖,在棱長(zhǎng)為
的正方體
中,記平面
為
,平面
為
,點(diǎn)
是棱
上一動(dòng)點(diǎn)(與
不重合),
,
.給出下列三個(gè)結(jié)論:①線段
長(zhǎng)度的取值范圍是
;②存在點(diǎn)
使得
平面
;③存在點(diǎn)
使得
.其中正確結(jié)論的序號(hào)是_______.
【答案】①②
【解析】
建立空間直角坐標(biāo)系,求出各個(gè)點(diǎn)的坐標(biāo),利用向量法驗(yàn)證各個(gè)結(jié)論,即可得到結(jié)果.
過作
,垂足為
;過
作
,交
于
;連接
,交
于
,如下圖所示:
平面
,
平面
,
,
又,
平面
,
,
平面
,
,
平面
,
平面
,
,
即為
;
四邊形
為正方形,
,
平面
,
平面
,
,
又平面
,
,
平面
,
,
即為
.
以為坐標(biāo)原點(diǎn),可建立如下圖所示的空間直角坐標(biāo)系,
設(shè),則
,
,
,
,
,
對(duì)于①,,
,
,
,①正確;
對(duì)于②,平面
,
平面
的一個(gè)法向量
,
又,令
,即
,
解得:,
存在點(diǎn)
,使得
平面
,②正確;
對(duì)于③,,
,
令,方程無解,
不存在點(diǎn)
,使得
,③錯(cuò)誤.
故答案為:①②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條東西流向的筆直河流,現(xiàn)利用航拍無人機(jī)監(jiān)控河流南岸相距150米的
兩點(diǎn)處(
在
的正西方向),河流北岸的監(jiān)控中心
在
的正北方100米處,監(jiān)控控制車
在
的正西方向,且在通向
的沿河路上運(yùn)動(dòng),監(jiān)控過程中,保證監(jiān)控控制車
到無人機(jī)
和到監(jiān)控中心
的距離之和150米,平面
始終垂直于水平面
,且
,
兩點(diǎn)間距離維持在100米.
(1)當(dāng)監(jiān)控控制車到監(jiān)控中心
的距離為100米時(shí),求無人機(jī)
距離水平面
的距離;
(2)若記無人機(jī)看
處的俯角(
),監(jiān)控過程中,四棱錐
內(nèi)部區(qū)域的體積為監(jiān)控影響區(qū)域
,請(qǐng)將
表示為關(guān)于
的函數(shù),并求出監(jiān)控影響區(qū)域的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點(diǎn)為F到直線
的距離為
,拋物線
的焦點(diǎn)與橢圓E的焦點(diǎn)F重合,過F作與x軸垂直的直線交橢圓于S,T兩點(diǎn),交拋物線于C,D兩點(diǎn),且
.
(1)求橢圓E及拋物線G的方程;
(2)過點(diǎn)F且斜率為k的直線l交橢圓于A,B點(diǎn),交拋物線于M,N兩點(diǎn),如圖所示,請(qǐng)問是否存在實(shí)常數(shù),使
為常數(shù),若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)以的邊
為長(zhǎng)軸且過點(diǎn)
的橢圓
的方程為
橢圓
的離心率
,
面積的最大值為
,
和
所在的直線分別與直線
相交于點(diǎn)
,
.
(1)求橢圓的方程;
(2)設(shè)與
的外接圓的面積分別為
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓
上一點(diǎn),過點(diǎn)
作
軸的垂線交
軸于點(diǎn)
,點(diǎn)
滿足
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)為直線
上一點(diǎn),
為坐標(biāo)原點(diǎn),且
,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)
處的切線方程為
.
(1)求,
;
(2)函數(shù)圖像與
軸負(fù)半軸的交點(diǎn)為
,且在點(diǎn)
處的切線方程為
,函數(shù)
,
,求
的最小值;
(3)關(guān)于的方程
有兩個(gè)實(shí)數(shù)根
,
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)號(hào)為1,2,3的三位小學(xué)生,在課余時(shí)間一起玩“擲骰子爬樓梯”游戲,規(guī)則如下:投擲一顆骰子,將每次出現(xiàn)點(diǎn)數(shù)除以3,若學(xué)號(hào)與之同余(同除以3余數(shù)相同),則該小學(xué)生可以上2階樓梯,另外兩位只能上1階樓梯,假定他們都是從平地(0階樓梯)開始向上爬,且樓梯數(shù)足夠多.
(1)經(jīng)過2次投擲骰子后,學(xué)號(hào)為1的同學(xué)站在第X階樓梯上,試求X的分布列;
(2)經(jīng)過多次投擲后,學(xué)號(hào)為3的小學(xué)生能站在第n階樓梯的概率記為,試求
,
,
的值,并探究數(shù)列
可能滿足的一個(gè)遞推關(guān)系和通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為
,把滿足條件
的所有數(shù)列
構(gòu)成的集合記為
.
(1)若數(shù)列的通項(xiàng)為
,則
是否屬于
?
(2)若數(shù)列是等差數(shù)列,且
,求
的取值范圍;
(3)若數(shù)列的各項(xiàng)均為正數(shù),且
,數(shù)列
中是否存在無窮多項(xiàng)依次成等差數(shù)列,若存在,給出一個(gè)數(shù)列
的通項(xiàng);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,
,
,
,
是
上一點(diǎn),且
.
(1)求證:平面
;
(2)是
的中點(diǎn),若二面角
的平面角的正切值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com