日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx,g(x)=ax+
          a-1
          x
          +1
          (a∈R),F(xiàn)(x)=f(x)-g(x).
          (1)是否存在實(shí)數(shù)a,使以F(x)圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤1恒成立?
          (2)當(dāng)a≤
          1
          2
          時(shí),討論F(x)的單調(diào)性.
          分析:(1)求導(dǎo)函數(shù),以F(x)圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤1恒成立,等價(jià)于F′(x)=-
          ax2-x+1-a
          x2
          ≤1
          (x>0)恒成立,分類討論,可得結(jié)論;
          (2)求導(dǎo)函數(shù),分類討論,利用導(dǎo)數(shù)的正負(fù),即可得到F(x)的單調(diào)性.
          解答:解:(1)F(x)=f(x)-g(x)=lnx-ax-
          a-1
          x
          -1

          ∵以F(x)圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤1恒成立,
          F′(x)=-
          ax2-x+1-a
          x2
          ≤1
          (x>0)恒成立,
          ∴(a+1)x2-x-(a-1)≥0①在x>0時(shí)恒成立.
          當(dāng)a≤-1時(shí),①在x>0時(shí)不恒成立
          a<-1時(shí),△=4a2-3,設(shè)u(x)=(a+1)x2-x-(a-1),則
          a+1>0
          △<0
          a+1>0
          △>0
          u(0)=1-a≥0
          x=-
          -1
          2(a+1)
          <0

          -
          3
          2
          <a<
          3
          2
          ;
          (2)F′(x)=-
          ax2-x+1-a
          x2
          (x>0)

          令h(x)=ax2-x+1-a(x>0)
          當(dāng)a=0時(shí),h(x)=1-x,x∈(0,1)時(shí),h′(x)>0;x∈[1,+∞)時(shí),h′(x)≤0
          ∴F(x)的單調(diào)遞減區(qū)間是(0,1),單調(diào)遞增區(qū)間是[1,+∞);
          當(dāng)a≠0時(shí),由F′(x)=0可得ax2-x+1-a=0
          x1=1,x2=
          1
          a-1

          (i)當(dāng)a=
          1
          2
          時(shí),x1=x2,h(x)≥0,F(xiàn)′(x)≤0,函數(shù)在(0,+∞)上單調(diào)遞減;
          (ii)當(dāng)0<a<
          1
          2
          時(shí),
          1
          a
          -1>1>0
          ,x∈(0,1),h(x)>0,∴F′(x)<0,函數(shù)單調(diào)遞減;x∈(1,
          1
          a
          -1
          )時(shí),h(x)<0,F(xiàn)′(x)>0,函數(shù)單調(diào)遞增;當(dāng)x∈(
          1
          a
          -1
          ,+∞)時(shí),h(x)>0,∴F′(x)<0,函數(shù)單調(diào)遞減,
          ∴函數(shù)的單調(diào)遞減區(qū)間是(0,1),(
          1
          a
          -1
          ,+∞);單調(diào)遞增區(qū)間是(1,
          1
          a
          -1
          );
          (iii)當(dāng)a<0時(shí),
          1
          a
          -1
          <0,x∈(0,1),h(x)>0,∴F′(x)<0,函數(shù)單調(diào)遞減;x∈(1,+∞)時(shí),h(x)<0,F(xiàn)′(x)>0,函數(shù)單調(diào)遞增,
          ∴函數(shù)的單調(diào)遞減區(qū)間是(0,1);單調(diào)遞增區(qū)間是(1,+∞).
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性,考查分類討論是數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對(duì)任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案