日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的,否則稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個函數(shù)f1(x)=loga(x-3a)與f2(x)=loga(a>0,a≠1)
          (1)求f1(x)-f2(x)的定義域;
          (2)若f1(x)與f2(x)在整個給定區(qū)間[a+2,a+3]上都有意義,
          ①求a的取值范圍;
          ②討論f1(x)與f2(x)在整個給定區(qū)間[a+2,a+3]上是不是接近的.
          【答案】分析:(1)利用求函數(shù)定義域的方法求函數(shù)的定義域.
          (2)利用函數(shù)的新定義確定a的取值范圍.
          解答:解:(1)因為f1(x)-f2(x)=loga(x-3a)-loga(a>0,a≠1),
          所以要使函數(shù)有意義,則,即,所以x>3a.
          定義域為(3a,+∞)…(1分)
          (2)①由3a<a+2∴0<a<1…(2分)
          ②若f1(x)與f2(x)在[a+2,a+3]上接近…(4分)

          .…(8分)
          點評:本題主要考查對數(shù)函數(shù)的性質(zhì)和應(yīng)用,考查學(xué)生分析問題的能力,綜合性較強(qiáng),運算量較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果對任意x∈[m,n]均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的;否則,稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個函數(shù)f1(x)=loga(x-3a)與f2(x)=loga
          1x-a
          (a>0且a≠1),f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,
          (1)求a的取值范圍;
          (2)問f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是否為接近的?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的,否則稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個函數(shù)f1(x)=loga(x-3a)與f2(x)=loga
          1x-a
          (a>0,a≠1)
          (1)求f1(x)-f2(x)的定義域;
          (2)若f1(x)與f2(x)在整個給定區(qū)間[a+2,a+3]上都有意義,
          ①求a的取值范圍;
          ②討論f1(x)與f2(x)在整個給定區(qū)間[a+2,a+3]上是不是接近的.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶八中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          對于區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果對任意x∈[m,n]均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的;否則,稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個函數(shù)f1(x)=loga(x-3a)與(a>0且a≠1),f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,
          (1)求a的取值范圍;
          (2)問f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是否為接近的?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶市江北中學(xué)高三(上)周練數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

          對于區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果對任意x∈[m,n]均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的;否則,稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個函數(shù)f1(x)=loga(x-3a)與(a>0且a≠1),f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,
          (1)求a的取值范圍;
          (2)問f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是否為接近的?請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案