日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)f(x)對(duì)任意自然數(shù)x,y均滿足:f(x+y2)=f(x)+2[f(y)]2,且f(1)≠0則f(2010)=
           
          分析:利用特值,求出f(0),f(1)的值,令y=1,確定出f(x+1)與f(x)的關(guān)系,然后利用遞推關(guān)系求出結(jié)果.
          解答:解:y=0時(shí) f(x)=f(x)+2f2(0)
          解得f(0)=0
          x=0,y=1時(shí)
          f(1)=f(0)+2f2(1)=2f2(1)
          因f(1)≠0
          所以f(1)=
          1
          2
          y=1時(shí)  f(x+1)=f(x)+2f2(1)=f(x)+2(
          1
          2
          2
          所以f(x+1)=f(x)+
          1
          2
          故f(2010)=f(2009+1)=f(2009)+
          1
          2
          =f(2008)+
          1
          2
          +
          1
          2
          =f(2008)+(
          1
          2
          )×2
          =…=f(1)+(
          1
          2
          )×2009
          =
          1
          2
          +(
          1
          2
          )×2009
          =
          1
          2
          ×2010
          =1005
          故答案為:1005.
          點(diǎn)評(píng):本題考查了抽象函數(shù)的應(yīng)用,賦值法及遞推關(guān)系是解決本題的關(guān)鍵.注意項(xiàng)數(shù).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          4、若函數(shù)f(x)對(duì)任意實(shí)數(shù)x都有f(x)<f(x+1),那么( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2∈D,均有|f(x2-f(x1))|≤|x2-x1|,則稱函數(shù)f(x)是區(qū)間D上的“平緩函數(shù)”.下列函數(shù)是實(shí)數(shù)集R上的“平緩函數(shù)”的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,則稱函數(shù)f(x)是區(qū)間D上的“平緩函數(shù)”,
          (1)判斷g(x)=sinx和h(x)=x2-x是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說明理由;
          (2)若數(shù)列{xn}對(duì)所有的正整數(shù)n都有 |xn+1-xn|≤
          1
          (2n+1)2
          ,設(shè)yn=sinxn,求證:|yn+1-y1|<
          1
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          等比數(shù)列{an}中,a1,a2,a3分別是表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在表的同一列.
          第一列 第二列 第三列
          第一行 3 2 10
          第二行 6 4 14
          第三行 9 8 18
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若函數(shù)f(x)對(duì)任意的x∈R都有f(x)+f(1-x)=1,數(shù)列{bn}滿足bn=f(0)+f(
          1
          n
          )+f(
          2
          n
          )+…
          +f(
          n-1
          n
          )+f(1)
          ,設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案