日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):①每一行中的二項(xiàng)式系數(shù)是“對(duì)稱(chēng)”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,…;②圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):cnm=Cnn-m
          (1)試寫(xiě)出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);
          (2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.
          分析:性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì)是
          C
          m
          n+1
          =
          C
          m
          n
          +
          C
          m-1
          n
          ,利用組合數(shù)公式進(jìn)行證明即可.
          解答:解:(1)性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì)是
                
          C
          m
          n+1
          =
          C
          m
          n
          +
          C
          m-1
          n
             
          (2)因?yàn)?span id="3nz62dt" class="MathJye">
          C
          m
          n+1
          =
          (n+1)!
          m!(n+1-m)!

               
          C
          m
          n
          +
          C
          m-1
          n
          =
          n!
          m!(n-m)!
          +
          n!
          (m-1)!(n+1-m)!
                           
          =
          n![(n+1-m)+m]
          m!(n+1-m)!
          =
          n!(n+1)
          m!(n+1-m)!
          =
          (n+1)!
          m!(n+1-m)!

          所以
          C
          m
          n+1
          =
          C
          m
          n
          +
          C
          m-1
          n
          點(diǎn)評(píng):本題考查了組合數(shù)的性質(zhì)及其證明,考查組合數(shù)公式的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:江蘇省無(wú)錫一中2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

          在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):①每一行中的二項(xiàng)式系數(shù)是“對(duì)稱(chēng)”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,……;②圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):

          (1)試寫(xiě)出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);

          (2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):①每一行中的二項(xiàng)式系數(shù)是“對(duì)稱(chēng)”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,…;②圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):cnm=Cnn-m
          (1)試寫(xiě)出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);
          (2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題共2小題,第一小題4分,第二小題8分,共12分)

          在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):① 每一行中的二項(xiàng)式系數(shù)是“對(duì)稱(chēng)”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,;② 圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):

          (1)試寫(xiě)出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);

          (2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案