日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•靜安區(qū)一模)已知函數(shù)f(x)=x2+ax+3-a,a∈R.
          (1)求a的取值范圍,使y=f(x)在閉區(qū)間[-1,3]上是單調(diào)函數(shù);
          (2)當(dāng)0≤x≤2時(shí),函數(shù)y=f(x)的最小值是關(guān)于a的函數(shù)m(a).求m(a)的最大值及其相應(yīng)的a值;
          (3)對(duì)于a∈R,研究函數(shù)y=f(x)的圖象與函數(shù)y=|x2-2x-3|的圖象公共點(diǎn)的個(gè)數(shù)、坐標(biāo),并寫(xiě)出你的研究結(jié)論.
          分析:(1)求出函數(shù)f(x)=x2+ax+3-a圖象的對(duì)稱軸為x=-
          a
          2
          .由f(x)在閉區(qū)間[-1,3]上是單調(diào)函數(shù),能夠求出a的取值范圍.
          (2)當(dāng)a≥0時(shí),m(a)=f(0)=3-a;當(dāng)-4≤a<0時(shí),m(a)=f(-
          a
          2
          )=-
          1
          4
          a2-a+3;當(dāng)a<-4時(shí),m(a)=f(2)=a+7.分段討論并比較大小得,能夠求出m(a)的最大值及其相應(yīng)的a值.
          (3)公共點(diǎn)的橫坐標(biāo)x滿足x2+ax+3-a=|x2-2x-3|.即x是方程a(x-1)=|x2-2x-3|-x2-3的實(shí)數(shù)解.設(shè)h(x)=|x2-2x-3|-x2-3,由此入手進(jìn)行研究,能夠得到結(jié)論.
          解答:解:(1)函數(shù)f(x)=x2+ax+3-a圖象的對(duì)稱軸為x=-
          a
          2

          因?yàn)閒(x)在閉區(qū)間[-1,3]上是單調(diào)函數(shù),所以-
          a
          2
          ≤-1或-
          a
          2
          ≥3.
          故a≤-6,或a≥2.…(4分)
          (2)當(dāng)a≥0時(shí),m(a)=f(0)=3-a;
          當(dāng)-4≤a<0時(shí),m(a)=f(-
          a
          2
          )=-
          1
          4
          a2-a+3;
          當(dāng)a<-4時(shí),m(a)=f(2)=a+7.…(2分)
          所以,m(a)=
          a+7,a<-4
          -
          1
          4
          a2-a+3,-4≤a<0
          3-a,a≥0
          ,
          分段討論并比較大小得,當(dāng)a=-2時(shí),m(a)有最大值4.…(6分)
          (3)公共點(diǎn)的橫坐標(biāo)x滿足x2+ax+3-a=|x2-2x-3|.
          即x是方程a(x-1)=|x2-2x-3|-x2-3的實(shí)數(shù)解.
          設(shè)h(x)=|x2-2x-3|-x2-3,
          則直線y=a(x-1)與y=h(x)有公共點(diǎn)時(shí)的橫坐標(biāo)與上述問(wèn)題等價(jià).
          當(dāng)x≤-1或x≥3時(shí),h(x)=|x2-2x-3|-x2-3=-2x-6;
          解方程-2x-6=a(x-1),即(a+2)x=a-6,得x=
          a-6
          a+2
          ,a≠-2;…(1分)
          當(dāng)-1≤x≤3時(shí),h(x)=|x2-2x-3|-x2-3=-2x2+2x.
          解方程-2x2+2x=a(x-1),
          即2x2+(a-2)x-a=0,得x=-
          a
          2
          或x=1;…(2分)
          研究結(jié)論及評(píng)分示例:(滿分6分)
          結(jié)論1:無(wú)論a取何實(shí)數(shù)值,點(diǎn)(1,4)必為兩函數(shù)圖象的公共點(diǎn).…(1分)
          結(jié)論2:(對(duì)某些具體的a取值進(jìn)行研究).…(2分)
          當(dāng)a=-2時(shí),兩圖象有一個(gè)公共點(diǎn)(1,4);
          當(dāng)a=-6時(shí),公共點(diǎn)有2個(gè),坐標(biāo)為(1,4),(3,0);
          當(dāng)a=2時(shí),公共點(diǎn)有2個(gè),坐標(biāo)為(1,4)、(-1,0).
          (對(duì)每一個(gè)具體的a取值,結(jié)論正確給(1分),總分值不超過(guò)2分)
          結(jié)論3:當(dāng)-2<a<2,-6<a<-2時(shí),公共點(diǎn)有3個(gè),
          坐標(biāo)為(1,4)、(-
          a
          2
          ,|
          a2
          4
          +a-3
          |)、(
          a-6
          a+2
          |a2-17a+42|
          (a+2)2
          ).…(4分)
          點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì)和應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•靜安區(qū)一模)在△ABC中,a、b、c分別為角A、B、C所對(duì)的三邊長(zhǎng),若(a2+c2-b2)tanB=
          3
          ac
          ,則角B的大小為
          π
          3
          3
          π
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•靜安區(qū)一模)記min{a,b}=
          a,  當(dāng)a≤b時(shí)
          b,  當(dāng)a>b時(shí)
          ,已知函數(shù)f(x)=min{x2+2tx+t2-1,x2-4x+3}是偶函數(shù)(t為實(shí)常數(shù)),則函數(shù)y=f(x)的零點(diǎn)為
          x=±3,±1
          x=±3,±1
          .(寫(xiě)出所有零點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•靜安區(qū)一模)設(shè)函數(shù)f(x)=|x+1|+|x-a|的圖象關(guān)于直線x=1對(duì)稱,則a的值為
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•靜安區(qū)一模)已知正三棱錐的底面邊長(zhǎng)為2,高為1,則該三棱錐的側(cè)面積為
          2
          3
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•靜安區(qū)一模)設(shè)i為虛數(shù)單位,若復(fù)數(shù)(1+i)2-
          b1+i
          (b∈R)的實(shí)部與虛部相等,則實(shí)數(shù)b的值為
          -2
          -2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案