日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知直線關(guān)于直線對稱的直線為,直線與橢圓分別交于點、,記直線的斜率為.

          (Ⅰ)求的值;

          (Ⅱ)當(dāng)變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標(biāo);若不恒過定點,請說明理由.

          【答案】(Ⅰ)1;(Ⅱ).

          【解析】試題分析:(Ⅰ)可以設(shè)直線的方程為,再設(shè)直線上任意一點關(guān)于直線對稱點為,于是分別表示出,由直線對稱性可知, 所在直線與垂直,且中點在上,于是整理得出的值;(Ⅱ)本問考查橢圓中直線過定點問題,設(shè),將AM方程與橢圓方程聯(lián)立,可以求出點M的坐標(biāo),同理將直線AN方程與橢圓方程聯(lián)立,可以求出點N的坐標(biāo),根據(jù)MN兩點坐標(biāo),可以求出直線MN的方程,從而判定直線MN是否過定點.

          試題解析:(Ⅰ)設(shè)直線上任意一點關(guān)于直線對稱點為

          直線與直線的交點為,∴

          ,由

          ……..①

          …….②,

          由①②得

          .

          (Ⅱ)設(shè)點,由,

          ,∴.

          同理: ,

          ,∴

          即:

          ∴當(dāng)變化時,直線過定點.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓經(jīng)過點,離心率為. 

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)過坐標(biāo)原點作直線交橢圓、兩點,過點的平行線交橢圓、兩點.

          ①是否存在常數(shù),滿足?若存在,求出這個常數(shù);若不存在,請說明理由;

          ②若的面積為, 的面積為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BCAB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

          )證明MN∥平面PAB;

          )求直線AN與平面PMN所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中, , , 為線段的中點, 為線段的三等分點(如圖1).將沿著折起到的位置,連接(如圖2).

          1若平面平面求三棱錐的體積;

          2記線段的中點為平面與平面的交線為,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

          A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

          C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個盒子中裝有6個完全相同的小球,分別標(biāo)號為12,3,4,56.

          1)一次取出兩個小球,求其號碼之和能被3整除的概率;

          2)有放回的取球兩次,每次取一個,求兩個小球號碼是相鄰整數(shù)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某班主任為了對本班學(xué)生的月考成績進(jìn)行分析,從全班40名同學(xué)中隨機(jī)抽取一個容量為6的樣本進(jìn)行分析.隨機(jī)抽取6位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)對應(yīng)如表:

          學(xué)生編號

          1

          2

          3

          4

          5

          6

          數(shù)學(xué)分?jǐn)?shù)x

          60

          70

          80

          85

          90

          95

          物理分?jǐn)?shù)y

          72

          80

          88

          90

          85

          95

          (1)根據(jù)上表數(shù)據(jù)用散點圖說明物理成績y與數(shù)學(xué)成績x之間是否具有線性相關(guān)性?

          (2)如果具有線性相關(guān)性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關(guān)性,請說明理由.

          (3)如果班里的某位同學(xué)數(shù)學(xué)成績?yōu)?0,請預(yù)測這位同學(xué)的物理成績。

          (附)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且, .

          ⑴ 求證: 平面

          (2)設(shè),若三棱錐的體積為1,求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的質(zhì)量以其“無故障使用時間 (單位:小時)”衡量,無故障使用時間越大表明產(chǎn)品質(zhì)量越好,且無故障使用時間大于3小時的產(chǎn)品為優(yōu)質(zhì)品,從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取100件,并記錄了每件產(chǎn)品的無故障使用時間,得到下面試驗結(jié)果:

          無故障使用時間 (小時)

          頻數(shù)

          20

          40

          40

          以試驗結(jié)果中無故障使用時間落入各組的頻率作為一件產(chǎn)品的無故障使用時間落入相應(yīng)組的概率.

          (1)從該企業(yè)任取兩件這種產(chǎn)品,求至少有一件是優(yōu)質(zhì)品的概率;

          (2)若該企業(yè)生產(chǎn)的這種產(chǎn)品每件銷售利潤 (單位:元)與其無故障使用時間的關(guān)系式為

          從該企業(yè)任取兩件這種產(chǎn)品,其利潤記為 (單位:元),求的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊答案