日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2個小題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.

          (1)(本小題滿分7分)選修4—2:矩陣與變換

          在平面直角坐標(biāo)系中,把矩陣確定的壓縮變換與矩陣確定的旋轉(zhuǎn)變換進(jìn)行復(fù)合,得到復(fù)合變換

          (Ⅰ)求復(fù)合變換的坐標(biāo)變換公式;

          (Ⅱ)求圓在復(fù)合變換的作用下所得曲線的方程.

          (2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),分別為直線軸、軸的交點(diǎn),線段的中點(diǎn)為

          (Ⅰ)求直線的直角坐標(biāo)方程;

          (Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)的極坐標(biāo)和直線的極坐標(biāo)方程.

          (3)(本小題滿分7分)選修4—5:不等式選講

          已知不等式的解集與關(guān)于的不等式的解集相等.

          (Ⅰ)求實數(shù),的值;

          (Ⅱ)求函數(shù)的最大值,以及取得最大值時的值.

           

          【答案】

          (1),(2) ,的極坐標(biāo)為,

          (3),時,函數(shù)取得最大值

          【解析】

          試題分析:本小題主要考查矩陣與變換等基礎(chǔ)知識,考查運(yùn)算求解能力及函數(shù)與方程思想.滿分7分.

          解:(Ⅰ)復(fù)合變換對應(yīng)的矩陣為,……2分

          所以,復(fù)合變換的坐標(biāo)變換公式為.            ……………3分

          (Ⅱ)設(shè)圓上任意一點(diǎn)在變換的作用下所得的點(diǎn)為,

          由(Ⅰ)得,即,………………5分

          代入圓,得,

          所以,曲線的方程是.…………………7分

          (2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程

          本小題主要考查參數(shù)方程、極坐標(biāo)方程等基礎(chǔ)知識,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.滿分7分.

          (3)(本小題滿分7分)選修4—5:不等式選講

          本小題主要考查絕對值的含義、柯西不等式等基礎(chǔ)知識,考查運(yùn)算求解能力以及推理論證能力,考查函數(shù)與方程思想.滿分7分.

          (Ⅰ)∵不等式的解集為,……………………1分

          ∴不等式的解集為.

          從而為方程的兩根,………………2分

          ,

          解得:.……………………3分

          (Ⅱ)函數(shù)的定義域為,且顯然有,

          由柯西不等式可得:

                                   ,……………5分

          當(dāng)且僅當(dāng)時等號成立,   ……………6分

          時,函數(shù)取得最大值.………………7分

          考點(diǎn):矩陣與變換,絕對值的含義、柯西不等式等基礎(chǔ)知識,參數(shù)方程、極坐標(biāo)方程等基礎(chǔ)知識。

          點(diǎn)評:主要是考查了考查三選一中矩陣與變換、絕對值、柯西不等式知識點(diǎn)的運(yùn)算求解能力及函數(shù)與方程思想,以及化歸與轉(zhuǎn)化思想.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,請考生任選2題作答.
          (1)選修4-2:矩陣與變換
          已知a,b∈R,若M=
          -1a
          b3
          所對應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實數(shù)a,b,并求M的逆矩陣.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知直線l的參數(shù)方程:
          x=t
          y=1+2t
          (t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
          2
          sin(θ+
          π
          4
          )

          ①將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
          ②判斷直線l和圓C的位置關(guān)系.
          (3)選修4-5:不等式選講
          已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實數(shù)x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
          (1).選修4-2:矩陣與變換
          已知矩陣A=
          1a
          -1b
          ,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
          2
          1

          (Ⅰ)求矩陣A;
          (Ⅱ)若向量β=
          7
          4
          ,計算A2β的值.

          (2).選修4-4:坐標(biāo)系與參數(shù)方程
          已知橢圓C的極坐標(biāo)方程為ρ2=
          12
          3cos2θ+4sin2θ
          ,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
          x=2+
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
          (3).選修4-5:不等式選講
          已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          12
          34

          ①求矩陣A的逆矩陣B;
          ②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
          x=1+2cosα
          y=-1+2sinα
          (a為參數(shù)),點(diǎn)Q極坐標(biāo)為(2,
          7
          4
          π).
          (Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
          (Ⅱ)若點(diǎn)P是圓C上的任意一點(diǎn),求P、Q兩點(diǎn)距離的最小值.
          (3)選修4-5:不等式選講
          (I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
          (II)設(shè)x,y,z∈R,且
          x2
          16
          +
          y2
          5
          +
          z2
          4
          =1
          ,求x+y+z的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
          (Ⅰ)選修4-2:矩陣與變換,
          已知矩陣A=
          01
          a0
          ,矩陣B=
          02
          b0
          ,直線l1
          :x-y+4=0經(jīng)矩陣A所對應(yīng)的變換得直線l2,直線l2又經(jīng)矩陣B所對應(yīng)的變換得到直線l3:x+y+4=0,求直線l2的方程.
          (Ⅱ)選修4-4:坐標(biāo)系與參數(shù)方程,
          求直線
          x=-2+2t
          y=-2t
          被曲線
          x=1+4cosθ
          y=-1+4sinθ
          截得的弦長.
          (Ⅲ)選修4-5:不等式選講,解不等式|x+1|+|2x-4|>6.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分
          (1)已知矩陣M=
          12
          21
          ,β=
          1
          7
          ,(Ⅰ)求M-1;(Ⅱ)求矩陣M的特征值和對應(yīng)的特征向量;(Ⅲ)計算M100β.
          (2)曲線C的極坐標(biāo)方程是ρ=1+cosθ,點(diǎn)A的極坐標(biāo)是(2,0),求曲線C在它所在的平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)一周而形成的圖形的周長.
          (3)已知a>0,求證:
          a2+
          1
          a2
          -
          2
          ≥a+
          1
          a
          -2

          查看答案和解析>>

          同步練習(xí)冊答案