(本小題滿分12分)
已知橢圓經(jīng)過點M(-2,-1),離心率為
。過點M作傾斜角
互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q。
(I)求橢圓C的方程;
(II)能否為直角?證明你的結(jié)論;
(III)證明:直線PQ的斜率為定值,并求這個定值。
解:
(Ⅰ)由題設(shè),得+
=1, ①
且=
, ②
由①、②解得a2=6,b2=3,
橢圓C的方程為+
=1.………………………………………………………4分
(Ⅱ)記P(x1,y1)、Q(x2,y2).
設(shè)直線MP的方程為y+1=k(x+2),與橢圓C的方程聯(lián)立,得
(1+2k2)x2+(8k2-4k)x+8k2-8k-4=0,
-2,x1是該方程的兩根,則-2x1=,x1=
.
設(shè)直線MQ的方程為y+1=-k(x+2),
同理得x2=.……………………………………
……………………8分
因y1+1=k(x1+2),y2+1=-k(x2+2),
因此直線PQ的斜率為定值.……………………………………………………12分
解析
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓E: (a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標(biāo)原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知直線相交于A、B兩點。
(1)若橢圓的離心率為,焦距為2,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(其中O為坐標(biāo)原點),當(dāng)橢圓的離率
時,求橢圓的長軸長的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率
,且橢圓過點
.
(1)求橢圓的方程;
(2)若為橢圓
上的動點,
為橢圓的右焦點,以
為圓心,
長為半徑作圓
,過點
作圓
的兩條切線
,(
為切點),求點
的坐標(biāo),使得四邊形
的面積最大.]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在極坐標(biāo)系中,以極點為坐標(biāo)原點,極軸為x軸正半軸,建立直角坐標(biāo)系,點M(2,)的直角坐標(biāo)是( )
A.(2,1) | B.(![]() | C.(1,![]() | D.(1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)、
分別是橢圓
,
的左、右焦點,
是該橢圓上一個動點,且
,
。
、求橢圓
的方程;
、求出以點
為中點的弦所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 雙曲線的兩條漸近線的方程為y=±x,且經(jīng)過點(3,-2).(1)求雙曲線的方程;(2)過雙曲線的右焦點F且傾斜角為60°的直線交雙曲線于A、B兩點,求|AB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com