日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x+
          a
          x
          +b(x≠0)
          .,其中a,b∈R
          (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
          (Ⅱ)若對(duì)于任意的a∈[
          1
          2
          ,2]
          ,不等式f(x)≤10在[
          1
          4
          ,1]
          上恒成立,求b的取值范圍.
          分析:(I)先確定函數(shù)的定義域然后求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0;討論函數(shù)f(x)的單調(diào)性即可;
          (Ⅱ)由(Ⅰ)知,f(x)在[
          1
          4
          ,1]上的最大值為f(
          1
          4
          )
          與f(1)中的較大者,對(duì)于任意的a∈[
          1
          2
          ,2],不等式f(x)≤10在[
          1
          4
          ,1]上恒成立,利用函數(shù)的最值列出關(guān)于a,b的不等關(guān)系,從而得滿足條件的b的取值范圍.
          解答:解:(Ⅰ)f′(x)=1-
          a
          x2
          ,
          當(dāng)a≤0時(shí),顯然f'(x)>0(x≠0),這時(shí)f(x)在(-∞,0),(0,+∞)內(nèi)是增函數(shù);
          當(dāng)a>0時(shí),令f'(x)=0,解得x=±
          a
          ,
          當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
          x (-∞,-
          a
          -
          a
          (-
          a
          ,0)
          (0,
          a
          a
          a
          ,+∞)
          f'(x) + 0 - - 0 +
          f(x) 極大值 極小值
          所以f(x)在(-∞,-
          a
          ),(
          a
          ,+∞)內(nèi)是增函數(shù),在(-
          a
          ,0),(0,
          a
          )內(nèi)是減函數(shù)
          (Ⅱ)由(Ⅰ)知,f(x)在[
          1
          4
          ,1]上的最大值為f(
          1
          4
          )
          與f(1)中的較大者,對(duì)于任意的a∈[
          1
          2
          ,2],不等式f(x)≤10在[
          1
          4
          ,1]上恒成立,當(dāng)且僅當(dāng)
          f(
          1
          4
          )≤10
          f(1)≤10
          ,即
          b≤
          39
          4
          -4a
          b≤9-a
          ,對(duì)任意的a∈[
          1
          2
          ,2]成立.從而得b≤
          7
          4
          ,所以滿足條件的b的取值范圍是(-∞,
          7
          4
          ].
          點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的步驟是:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù)fˊ(x);(3)在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0;(4)確定函數(shù)的單調(diào)區(qū)間.若在函數(shù)式中含字母系數(shù),往往要分類討論.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
          (1)求m的值,并確定f(x)的解析式;
          (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:浙江省東陽(yáng)中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

          已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          已知函數(shù)f(x)、g(x),下列說(shuō)法正確的是( )
          A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
          B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
          C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
          D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案