日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱柱中,為正三角形,平面平面,,的中點(diǎn),

          1)求證:;

          2)求二面角的平面角的余弦值.

          【答案】1)見(jiàn)解析(2

          【解析】

          1)利用面面垂直的性質(zhì)定理可得平面,由線面垂直的性質(zhì)可得線線垂直;

          2)故以為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸建立空間直角坐標(biāo)系,

          分別求得平面與平面的法向量,利用空間向量求二面角的余弦值.

          1)證明:∵,的中點(diǎn),

          ,

          ∵平面平面,平面平面,平面,

          平面,

          ;

          2)連接,

          ,,

          為正三角形,

          的中點(diǎn),

          ,

          ∵平面平面,平面平面,平面,

          平面,

          故以為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸建立空間直角坐標(biāo)系,如圖所示,

          ,,,,,

          設(shè)為平面的法向量,

          ,

          ,可取,則,

          由(1)知為平面的法向量,

          于是,

          ∴二面角的平面角的余弦值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正四棱錐的底邊長(zhǎng)為2,側(cè)棱長(zhǎng)為,上一點(diǎn),且,點(diǎn)分別為,上的點(diǎn),且.

          1)證明:平面平面;

          2)求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知某種細(xì)菌的適宜生長(zhǎng)溫度為12~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:

          溫度/

          14

          16

          18

          20

          22

          24

          26

          繁殖數(shù)量/個(gè)

          25

          30

          38

          50

          66

          120

          218

          對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:

          20

          78

          4.1

          112

          3.8

          1590

          20.5

          其中,.

          1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說(shuō)明理由);

          2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);

          3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?

          參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx)=|2xa|+|xa+1|

          1)當(dāng)a4時(shí),求解不等式fx≥8

          2)已知關(guān)于x的不等式fxR上恒成立,求參數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示的幾何體中,平面,四邊形為菱形,,點(diǎn),分別在棱,.

          1)若平面,設(shè),求的值;

          2)若,,直線與平面所成角的正切值為,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】四川省雙流中學(xué)是一所國(guó)家級(jí)示范高中,具有悠久的辦學(xué)歷史、豐富的辦學(xué)經(jīng)驗(yàn).近年來(lái),雙中共為國(guó)內(nèi)外高校輸送合格新生20000余名,其中為清華、北大、復(fù)旦、人大等一流學(xué)府輸送新生1800余名,上本科線人數(shù)年年超過(guò)千人,培養(yǎng)出省、市、縣高考冠軍17名,位居成都市同類學(xué)校前茅.該校高三某班有50名學(xué)生參加了今年成都市一診考試,其中英語(yǔ)成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如下:

          1)如果成績(jī)140分及以上為單科特優(yōu),則該班本次考試中英語(yǔ)、數(shù)學(xué)單科特優(yōu)大約各多少人?

          2)試問(wèn)該班本次考試中英語(yǔ)和數(shù)學(xué)平均成績(jī)哪個(gè)較高,并說(shuō)明理由;

          3)如果英語(yǔ)和數(shù)學(xué)兩科都為單科特優(yōu)共有5人,把(1)中的近似數(shù)作為真實(shí)值,從(1)中這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中英語(yǔ)和數(shù)學(xué)雙科特優(yōu)的有人,求的分布列和數(shù)學(xué)期望.

          參考公式及數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓x軸負(fù)半軸交于,離心率.

          1)求橢圓C的方程;

          2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1是由矩形ADEB,RtABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BEBF重合,連結(jié)DG,如圖2.

          1)證明:圖2中的AC,GD四點(diǎn)共面,且平面ABC⊥平面BCGE;

          2)求圖2中的二面角BCGA的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類,某校組織了高三年級(jí)學(xué)生參與了“垃圾分類,從我做起”的知識(shí)問(wèn)卷作答,隨機(jī)抽出男女各20名同學(xué)的問(wèn)卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為“合格”.

          總計(jì)

          合格

          不合格

          總計(jì)

          1)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān)?

          2)從上述樣本中,成績(jī)?cè)?/span>60分以下(不含60分)的男女學(xué)生問(wèn)卷中任意選2個(gè),求這2個(gè)學(xué)生性別不同的概率.

          附:

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          同步練習(xí)冊(cè)答案