日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.
          第一列 第二列 第三列
          第一行 3 2 10
          第二行 6 4 14
          第三行 9 8 18
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)若數(shù)列{bn}滿足:bn=an+(-1)nlnan,求數(shù)列{bn}的前2n項和S2n
          分析:本題考查的是數(shù)列求和問題.在解答時:
          (Ⅰ)此問首先要結(jié)合所給列表充分討論符合要求的所有情況,根據(jù)符合的情況進一步分析公比進而求得數(shù)列{an}的通項公式;
          (Ⅱ)首先要利用第(Ⅰ)問的結(jié)果對數(shù)列數(shù)列{bn}的通項進行化簡,然后結(jié)合通項的特點,利用分組法進行數(shù)列{bn}的前2n項和的求解.
          解答:解:(Ⅰ)當(dāng)a1=3時,不符合題意;
          當(dāng)a1=2時,當(dāng)且僅當(dāng)a2=6,a3=18時符合題意;
          當(dāng)a1=10時,不符合題意;
          所以a1=2,a2=6,a3=18,
          ∴公比為q=3,
          故:an=2•3n-1,n∈N*.
          (Ⅱ)∵bn=an+(-1)nlnan
          =2•3n-1+(-1)nln(2•3n-1
          =2•3n-1+(-1)n[ln2+(n-1)ln3]
          =2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3
          ∴S2n=b1+b2+…+b2n
          =2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n]•(ln2-ln3)+[-1+2-3+…+(-1)2n2n]ln3
          =
          1-32n
          1-3
          +nln3

          =32n+nln3-1
          ∴數(shù)列{bn}的前2n項和S2n=32n+nln3-1.
          點評:本題考查的是數(shù)列求和問題.在解答的過程當(dāng)中充分體現(xiàn)了分類討論的思想、分組求和的方法、等比數(shù)列通項的求法以及運算能力.值得同學(xué)們體會和反思.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          等比數(shù)列{an}中,a2=18,a4=8,則公比q等于(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等比數(shù)列{an}中,a1=0,an+1=
          1
          2-an

          (Ⅰ)求數(shù)列{an}的通項公式an;
          (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:Sn<n-ln(n+1);
          (Ⅲ)設(shè)bn=an
          9
          10
          n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
          3
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在等比數(shù)列{an}中,a3=2,a7=32,則a5=
          8
          8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前n項和為
          9n-1
          4
          9n-1
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
          a
          2
          1
          +
          a
          2
          2
          +…+
          a
          2
          n
          等于( 。

          查看答案和解析>>

          同步練習(xí)冊答案