日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DBCE為平行四邊形,EC⊥平面ABC,AB=2AC=2,tan∠DAB=
          3
          2

          (1)設(shè)F是CD的中點,證明:OF∥平面ADE;
          (2)求點B到平面ADE的距離;
          (3)畫出四棱錐A-BCED的正視圖(圓O在水平面,ABD在正面,要求標明垂直關(guān)系與至少一邊的長).
          分析:(1)F是CD的中點,證明:OF平行平面ADE內(nèi)的直線AE即可;
          (2)設(shè)點B到平面ADE的距離為h,由VB-ADE=VA-BDE可求點B到平面ADE的距離;
          (3)直接畫出四棱錐A-BCED的正視圖(圓O在水平面,ABD在正面,要求標明垂直關(guān)系與至少一邊的長).
          解答:解:(1)連接BE,因為DBCE為平行四邊形,F(xiàn)是CD的中點,所以BE∩CD=F,
          且F是BE的中點(1分),
          O是AB的中點,所以O(shè)F∥AE(2分),
          AE?平面ADE,OF?平面ADE,所以O(shè)F∥平面ADE(4分).
          (2)EC⊥平面ABC,從而BD⊥平面ABC,BD⊥AB,tan∠DAB=
          BE
          AB
          =
          3
          2
          ,
          所以BD=
          3
          (5分),
          因為EC⊥平面ABC,AC⊥CB,所以CA、CB、CE兩兩相交且互相垂直(6分),
          所以AC⊥平面BDE,BC⊥平面ACE,從而DE⊥平面ACE(7分),
          在三棱錐B-ADE中,S△BDE=
          3
          2
          ,S△ADE=
          3
          (9分),
          設(shè)點B到平面ADE的距離為h,由VB-ADE=VA-BDE
          1
          3
          ×S△BDE×AC=
          1
          3
          ×S△ADE×h
          (10分),
          解得h=
          3
          2
          (11分).
          (3)如圖(1分),
          標明兩個垂直關(guān)系BD⊥DE、BD⊥AB(1分),
          標明BD、DE、AB任何一邊的長再給(1分).
          點評:本小題主要考查空間線面關(guān)系的線面垂直的平行定理的運用,空間幾何體的體積的求解等知識,錐體體積的計算中最為關(guān)鍵的是確定錐體的高,而若高的確定比較困難時,常用等體積轉(zhuǎn)化求解答,也是非常常用的方法,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學思想方法,以及空間想象能力、推理論證能力和運算求解能力.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC內(nèi)接于⊙O,點D在OC的延長線上,AD切⊙O于A,若∠ABC=30°,AC=2,則AD的長為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
          3
          2

          (1)證明:平面ACD⊥平面ADE;
          (2)記AC=x,V(x)表示三棱錐A-CBE的體積,求V(x)的表達式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知△ABC內(nèi)接于圓⊙O,點D在OC的延長線上,AD是⊙O的切線,若∠B=30°,AC=
          3
          ,則△CAD的面積為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
          3
          2

          (1)證明:平面ACD⊥平面ADE;
          (2)記AC=x,V(x)表示三棱錐A-CBE的體積,求V(x)的表達式;
          (3)當V(x)取得最大值時,求證:AD=CE.

          查看答案和解析>>

          同步練習冊答案