日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的

          直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

          (Ⅰ) 求橢圓的方程;

          (Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足

          )試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.

          (Ⅰ) .  …………………6分

          (Ⅱ)滿足條件的點(diǎn)P的軌跡方程為.…………………14分


          解析:

          (Ⅰ)∵軸,∴,由橢圓的定義得:,  ……………2分

          ,∴,

              ∴      ………………4分

          ,∴所求橢圓C的方程為.  …………………6分

          (Ⅱ)由(Ⅰ)知點(diǎn)A(-2,0),點(diǎn)B為(0,-1),設(shè)點(diǎn)P的坐標(biāo)為

          ,,  由-4得-

          ∴點(diǎn)P的軌跡方程為      …………………8分

          設(shè)點(diǎn)B關(guān)于P的軌跡的對(duì)稱點(diǎn)為,則由軸對(duì)稱的性質(zhì)可得:,

          解得:,…………………10分

          ∵點(diǎn)在橢圓上,

          整理得解得 …………………12分

          ∴點(diǎn)P的軌跡方程為,經(jīng)檢驗(yàn)都符合題設(shè),

          ∴滿足條件的點(diǎn)P的軌跡方程為.…………………14分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標(biāo)系中,射線OA:x-y=0(x≥0),OB:
          3
          x+3y=0(x≥0),
          過點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B點(diǎn).
          ①當(dāng)AB的中點(diǎn)為P時(shí),求直線AB的方程;
          ②當(dāng)AB的中點(diǎn)在直線y=
          1
          2
          x上時(shí),求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo),求:
          (1)直線AB的一般式方程;
          (2)AC邊上的高所在直線的斜截式方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標(biāo)系中,直線y=6-x與y=
          4x
          (x>0)
          的圖象相交于點(diǎn)A、B,設(shè)點(diǎn)A的坐標(biāo)為(x1,y1),那么長(zhǎng)為x1,寬為y1的矩形面積和周長(zhǎng)分別為
          4,12
          4,12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標(biāo)系中,A,B,C三點(diǎn)在x軸上,原點(diǎn)O和點(diǎn)B分別是線段AB和AC的中點(diǎn),已知AO=m(m為常數(shù)),平面上的點(diǎn)P滿足PA+PB=6m.
          (1)試求點(diǎn)P的軌跡C1的方程;
          (2)若點(diǎn)(x,y)在曲線C1上,求證:點(diǎn)(
          x
          3
          ,
          y
          2
          2
          )
          一定在某圓C2上;
          (3)過點(diǎn)C作直線l,與圓C2相交于M,N兩點(diǎn),若點(diǎn)N恰好是線段CM的中點(diǎn),試求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓G的離心率為
          15
          4
          ,左頂點(diǎn)為A(-4,0).圓O′:(x-2)2+y2=
          4
          9

          (Ⅰ)求橢圓G的方程;
          (Ⅱ)過M(0,1)作圓O′的兩條切線交橢圓于E、F,判斷直線EF與圓的位置關(guān)系,并證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案