日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

          (I)求證:PD⊥BC;

          (II)求二面角B—PD—C的正切值。

          【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

          BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.

          ∴PD⊥BC.

          第二問中解:取PD的中點(diǎn)E,連接CE、BE,

          為正三角形,

          由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,

          ∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。

           

          【答案】

          (I)見解析    (II)

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
          (Ⅰ)求證:BD⊥FG;
          (Ⅱ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
          (Ⅰ)求證:PD⊥BC;
          (Ⅱ)求二面角B-PD-C的大小;
          (Ⅲ)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
          (Ⅰ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由;
          (Ⅱ)當(dāng)二面角B-PC-D的大小為
          3
          時(shí),求PC與底面ABCD所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在底面是正方形的四棱錐P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
          (I)求證:PD⊥BC;
          (II)求二面角B-PD-C的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一動(dòng)點(diǎn).
          (1)求證:BD⊥FG;
          (2)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由.
          (3)如果PA=AB=2,求三棱錐B-CDF的體積.

          查看答案和解析>>

          同步練習(xí)冊答案