日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)由“若a,b,c∈R,則(ab)c=a(bc)”類比“若
          a
          ,
          b
          ,
          c
          為三個(gè)向量,則(
          a
          b
          )•
          c
           =
          a
          •(
          b
          c
          )
          ”;
          (2)在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
          (3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
          (4)若f(x)=2cos2x+2sinxcosx則f(
          π
          4
          )=
          2
          +1

          上述四個(gè)推理中,得出的結(jié)論正確的是
          (2)(3)
          (2)(3)
          .(寫出所有正確結(jié)論的序號(hào))
          分析:向量不符合乘法結(jié)合律,通過配湊做出數(shù)列的通項(xiàng),四面體的任意三個(gè)面的面積之和大于第四面的面積,當(dāng)給x賦值1時(shí),可以得到各項(xiàng)的系數(shù)之和,但是不同的符號(hào)不正確.
          解答:解:∵向量不符合乘法結(jié)合律,
          設(shè)
          a
          b
          的夾角為A,
          b
          c
          的夾角為B,則
          a
          b
          c
          表示與
          c
          平行的向量,
          a
          •(
          b
          c
          )表示與
          a
          平行的向量,
          a
          c
          不一定平行,
          (
          a
          b
          )•
          c
           =
          a
          •(
          b
          c
          )
          不一定成立,
          故(1)不正確,
          ∵an+1=2an+2,
          ∴2+an+1=2(an+2),
          ∴{an+2}是一個(gè)等比數(shù)列,
          ∴an=2n-2,故(2)正確,
          根據(jù)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中
          “四面體的任意三個(gè)面的面積之和大于第四面的面積,(3)正確.
          當(dāng)給x賦值1時(shí),可以得到各項(xiàng)的系數(shù)之和,但是不同的符號(hào)不正確,故(4)不正確,
          故答案為:(2)(3).
          點(diǎn)評(píng):本題考查類比推理和歸納推理,本題解題的關(guān)鍵是正確理解類比和歸納的含義,注意本題所包含的四個(gè)命題都要正確解出才能做對(duì)本題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=|lgx|,a,b為實(shí)數(shù),且0<a<b.
          (1)求方程f(x)=1的解;
          (2)若a,b滿足f(a)=f(b)=2f(
          a+b
          2
          )
          ,求證:①a•b=1;②
          a+b
          2
          >1

          (3)在(2)的條件下,求證:由關(guān)系式f(b)=2f(
          a+b
          2
          )
          所得到的關(guān)于b的方程h(b)=0,存在b0∈(3,4),使h(b0)=0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•徐匯區(qū)三模)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
          x2
          4
          +y2=1

          (1)若橢圓C2
          x2
          16
          +
          y2
          4
          =1
          ,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說明理由;
          (2)寫出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
          (3)如圖:直線l與兩個(gè)“相似橢圓”
          x2
          a2
          +
          y2
          b2
          =1
          x2
          a2
          +
          y2
          b2
          =λ2(a>b>0,0<λ<1)
          分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在舒城中學(xué)第九屆校園文化節(jié)上共有7位學(xué)生(1至7號(hào))以歌唱節(jié)目參賽,由500名觀眾現(xiàn)場(chǎng)投票選出最喜愛歌手.根據(jù)年齡將觀眾分為五組,各組的人數(shù)如下:
          組別 A B C D E
          人數(shù) 100 50 150 50 150
          (1)為了調(diào)查觀眾對(duì)7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干觀眾,其中從A組抽取了6人,請(qǐng)將其余各組抽取的人數(shù)填入下表.
          組別 A B C D E
          人數(shù) 100 50 150 50 150
          抽取人數(shù) 6
          (2)在(1)中,若A,B兩組被抽到的觀眾中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

           甲乙二人玩猜數(shù)字游戲,先由甲任想一數(shù)字,記為a,再由乙猜甲剛才想的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b| ≤ 1,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,則他們“心有靈犀”的概率為

          A.                B.              C.                  D.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案