設(shè)
y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:①f(-1)=f(1)=0;②對任意的u,v∈[-1,1],都有(1)
證明:對任意的x∈[-1,1],都有x-1≤f(x)≤1-x.(2)
證明:對任意的u,v∈[-1,1],都有(3)
在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的奇函數(shù)y=f(x),且使得:若存在,請舉一例;若不存在,請說明理由.
(1) 證明:由題設(shè)條件可知,當(dāng):x∈[-1,1]時,有 ![]() 即 x-1≤f(x)≤1-x.(2) 證明:對任意的u,v∈[-1,1],當(dāng) ![]() ![]() 當(dāng) ![]() ![]() 所以 ![]() 綜上可知:對任意的 u,v∈[-1,1],都有![]() (3) 解:滿足所述條件的函數(shù)不存在.理由如下:假設(shè)存在函數(shù) f(x)滿足條件,則由|f(u)-f(v)|=|u-v|.u ,![]() ![]() 又 f(1)=0,所以![]() 又因?yàn)?/FONT>f(x)為奇函數(shù),所以f(0)=0.由條件|f(u)-f(v)|<|u-v|,u, |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
①f(-1)=f(1)=0;
②對任意u,v∈[-1,1]都有|f(u)-f(v)|≤|u-v|.
(1)證明對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(2)證明對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤1;
(3)在區(qū)間[-1,1]上是否存在滿足條件的奇函數(shù)y=f(x),且使得
若存在,請舉一例;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
①f(-1)=f(1)=0;
②對任意u,v∈[-1,1]都有|f(u)-f(v)|≤|u-v|.
(1)證明對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(2)證明對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤1;
(3)在區(qū)間[-1,1]上是否存在滿足條件的奇函數(shù)y=f(x),且使得
若存在,請舉一例;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省模擬題 題型:證明題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(i)f(-1)=f(1)=0;
(ii)對任意的u、v∈[-1,1]都有|f(u)-f(v)|≤|u-v|.
(1)證明對x∈[-1,1]都有x-1≤f(x)≤1-x;
(2)證明對任意的u、v∈[-1,1]都有|f(u)-f(v)|≤1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com