日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形.
          (Ⅰ)求證:對任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項公式;
          (Ⅱ)問是否存在等腰直角三角形AnBnAn+1?請說明理由.
          【答案】分析:(Ⅰ)由點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形,則有|AnBn|=|An+1Bn|得到xn+1+xn=2n,從而有xn+2+xn+1=2(n+1)兩式作差求解.
          (Ⅱ)假設(shè)存在等腰直角三角形AnBnAn+1,.在Rt△AnBnAn+1中,.由n為正奇數(shù)時,|xn+1-xn|=2(1-a),故有,即即0<n<4.n=1,3使得三角形AnBnAn+1為等腰直角三角形.當n為正偶數(shù)時,|xn+1-xn|有,即,當n=2時,使得三角形AnBnAn+1為等腰直角三角形.
          解答:解:(Ⅰ)由題意得,An(xn,0),An+1(xn+1,0),
          ∵點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形,
          ∴|AnBn|=|An+1Bn|,即
          得xn2-2nxn=xn+12-2nxn+1⇒(xn+1-xn)(xn+1+xn)=2n(xn+1-xn
          又∵xn+1≠xn,∴xn+1+xn=2n,①
          則xn+2+xn+1=2(n+1)②
          由②-①得,xn+2-xn=2,即xn+2-xn是常數(shù).(6分)
          即所列{x2k-1},{x2k}(k∈N*)都是等差數(shù)列.
          (注:可以直接由圖象得到,即xn+xn+1=2n,(n∈N*))
          當n為正奇數(shù)時,,
          當n為正偶數(shù)時,由x2+x1=2得,x2=2-a,故,
          .(8分)
          (Ⅱ)假設(shè)存在等腰直角三角形AnBnAn+1,由題意∠AnBnAn+1=90°.
          在Rt△AnBnAn+1中,.(10分)
          當n為正奇數(shù)時,xn=a+n-1,xn+1=n+1-a,
          ∴|xn+1-xn|=|n+1-a-a-n+1|=|2-2a|=2(1-a),故有,即,
          又∵0<a<1,∴0<1-a<1,∴,即0<n<4,
          ∴當n=1,3時,使得三角形AnBnAn+1為等腰直角三角形.(12分)
          當n為正偶數(shù)時,xn=n-a,xn+1=a+n+1-1=a+n,
          ∴|xn+1-xn|=|a+n-n+a|=|2a|=2a,故有,即
          又∵0<a<1,∴,即0<n<4,
          ∴當n=2時,使得三角形AnBnAn+1為等腰直角三角形.(14分)
          綜上所述,當n=1,2,3時,使得三角形AnBnAn+1為等腰直角三角形.(16分)
          點評:本題主要考查解析幾何與數(shù)列的綜合問題,涉及到求數(shù)列的通項公式,兩點間的距離公式以及分類討論,數(shù)形結(jié)合等思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
          x4
          上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形.
          (Ⅰ)求證:對任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項公式;
          (Ⅱ)問是否存在等腰直角三角形AnBnAn+1?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知點列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
          1
          4
          x+
          1
          12
          圖象上的點,點列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點,其中x1=a(0<a<1),對于任意n∈N,點An、Bn、An+1構(gòu)成以
          Bn為頂點的等腰三角形.
          (1)求{yn}的通項公式,且證明{yn}是等差數(shù)列;
          (2)試判斷xn+2-xn是否為同一常數(shù)(不必證明),并求出數(shù)列{xn}的通項公式;
          (3)在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時a值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•上海模擬)已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
          x4
          上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形.
          (1)證明:數(shù)列{yn}是等差數(shù)列;
          (2)求證:對任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項公式;
          (3)對上述等腰三角形AnBnAn+1添加適當條件,提出一個問題,并做出解答.(根據(jù)所提問題及解答的完整程度,分檔次給分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
          1
          4
          x+
          1
          12
          圖象上的點,點列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點,其中x1=a(0<a<1),對于任意n∈N,點An、Bn、An+1構(gòu)成一個頂角的頂點為Bn的等腰三角形.
          (1)求數(shù)列{yn}2的通項公式,并證明{yn}3是等差數(shù)列;
          (2)證明xn+2-xn5為常數(shù),并求出數(shù)列{xn}6的通項公式;
          (3)問上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此時a值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•藍山縣模擬)已知點列B1(1,b1),B2(2,b2),…,Bn(n,bn),…(n∈N?)順次為拋物線y=
          1
          4
          x2上的點,過點Bn(n,bn)作拋物線y=
          1
          4
          x2的切線交x軸于點An(an,0),點Cn(cn,0)在x軸上,且點An,Bn,Cn構(gòu)成以點Bn為頂點的等腰三角形.
          (1)求數(shù)列{an},{cn}的通項公式;
          (2)是否存在n使等腰三角形AnBnCn為直角三角形,若有,請求出n;若沒有,請說明理由.
          (3)設(shè)數(shù)列{
          1
          an•(
          3
          2
          +cn)
          }的前n項和為Sn,求證:
          2
          3
          ≤Sn
          4
          3

          查看答案和解析>>

          同步練習(xí)冊答案