【題目】已知函數(shù),
.
(1)函數(shù),
,求函數(shù)
的最小值;
(2)對任意,都有
成立,求
的范圍.
【答案】(1)見解析(2)
【解析】試題分析:
(1)由題意知.由
,得
.分三種情形討論即可求解.
(2)設(shè),則對任意
,都有
成立.由
,對
分三種情形討論,需要再次對導(dǎo)函數(shù)求導(dǎo),難度較大.
試題解析:(I).
,令
得
.
當(dāng)即
時,在
上
,
遞增,
的最小值為
.
當(dāng)即
時,在
上
,
為減函數(shù),在在
上
,
為增函數(shù).
∴ 的最小值為
.
當(dāng)即
時,在
上
,
遞減,
的最小值為
.
綜上所述,當(dāng)時
的最小值為
,當(dāng)
時
的最小值為
,當(dāng)
時,
最小值為
.
(II)設(shè),
.
①當(dāng)時,在
上
,
在
遞增,
的最小值為
,不可能有
.
②當(dāng)時, 令
,解得:
,此時
∴.∴
在
上遞減.∵
的最大值為
,∴
遞減.∴
的最大值為
,
即成立.
當(dāng)時,此時
當(dāng)
時,
遞增,當(dāng)
時,
遞減.
∴
,又由于
,
∴在上
,
遞增,
又∵,所以在
上
,顯然不合題意.
綜上所述:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2010年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費用m萬元(m≥0)滿足x=3﹣ (k為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2010年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2010年該產(chǎn)品的利潤y萬元表示為年促銷費用m萬元的函數(shù);
(2)該廠家2010年的促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F1,F2分別是橢圓C:的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ< )圖象如圖,P是圖象的最高點,Q為圖象與x軸的交點,O為原點.且|OQ|=2,|OP|=
,|PQ|=
.
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)圖象向右平移1個單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,2]時,求函數(shù)h(x)=f(x)g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是
,且過點
.直線
與橢圓
相交于
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最大值;
(Ⅲ)設(shè)直線,
分別與
軸交于點
,
.判斷
,
大小關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2 ,四邊形BDEF是平行四邊形,BD與AC交于點G,O為GC的中點,且FO⊥平面ABCD,F(xiàn)O=
.
(1)求BF與平面ABCD所成的角的正切值;
(2)求三棱錐O﹣ADE的體積;
(3)求證:平面AEF⊥平面BCF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)定義域為
,如果存在非實數(shù)
對任意的
都有
,則稱函數(shù)
是“似周期函數(shù)”,非零常數(shù)
為函數(shù)
的似周期.現(xiàn)有下列四個關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為
,那么它是周期為
的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③函數(shù)是“似周期函數(shù)”;
④如果函數(shù)是“似周期函數(shù)”.那么”
其中是真命題的序號是____.(請?zhí)顚懰袧M足條件的命題序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, i=184, =720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程;
(2)判斷變量x與y之間是正相關(guān)還是負相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程中,
,其中
為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點.
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com