【題目】已知函數(shù),
.
(1)若是函數(shù)
的極值點,求
的極小值;
(2)若對任意的實數(shù)a,函數(shù)在
上總有零點,求實數(shù)b的取值范圍.
【答案】(1);(2)
【解析】
(1)對函數(shù)求導(dǎo),可得
,計算可求出
的值,進而得到函數(shù)
的解析式,并判斷單調(diào)性可求出極小值;
(2)函數(shù)在
上總有零點,若
,可知
在
上單調(diào)遞增,可得
,即
,故
在
上總有零點的必要條件是
,然后分
和
兩種情況,分別證明當(dāng)
時,
在
上總有零點即可.
(1)由題可得,
因為,所以
,解得
,
故,
,
令,得
,解得
或
,所以
在
和
上單調(diào)遞增;
令,得
,解得
,所以
在
上單調(diào)遞減.
所以極小值為
.
(2)函數(shù)在
上總有零點,
即在
上總有零點.
若,則
在
上單調(diào)遞增,則
,即
.
故在
上總有零點的必要條件是
.
以下證明:當(dāng)時,
在
上總有零點.
①若,由于
,
,且
在
上連續(xù),
故在
上必有零點;
②若,
,
構(gòu)造函數(shù),則
,顯然
在
上單調(diào)遞減,在
上單調(diào)遞增,即
在
上最小值為
,
所以在
上恒成立,取
,則
,
,
則,
由于,
,
故在
上必有零點.
綜上,實數(shù)b的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜食 | 不喜歡甜食 | 合計 | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
附:
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是等比數(shù)列的公比大于
,其前
項和為
,
是等差數(shù)列,已知
,
,
,
.
(1)求,
的通項公式
(2)設(shè),數(shù)列
的前
項和為
,求
;
(3)設(shè),其中
,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動推出的天數(shù),
表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表下所示:
根據(jù)以上數(shù)據(jù),繪制了散點圖.
(1)根據(jù)散點圖判斷,在推廣期內(nèi),與
(
均為大于零的常數(shù)),哪一個適宜作為掃碼支付的人次
關(guān)于活動推出天數(shù)
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立與
的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下表:
西安公交六公司車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為
萬元.已知該線路公交車票價為
元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受
折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠.預(yù)計該車隊每輛車每個月有
萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設(shè)這批車需要
(
)年才能開始盈利,求
的值.
參考數(shù)據(jù):
其中其中,
,
參考公式:對于一組數(shù)據(jù),
,
,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩個頂點A,B的坐標分別為(,0),(
,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2
,動點C的軌跡為曲線G.
(1)求曲線G的方程;
(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點
,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在區(qū)間
(
為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)
的取值范圍;
(2)若在(
為自然對數(shù)的底數(shù))上存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓
交于不同的兩點
,
.
(1)若線段的中點為
,求直線
的方程;
(2)若的斜率為
,且
過橢圓
的左焦點
,
的垂直平分線與
軸交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,
側(cè)面
,已知
,
,
,點
是棱
的中點.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)在棱上是否存在一點
,使得
與平面
所成角的正弦值為
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系 xOy 中,已知橢圓 C:=1(a>b>0)的離心率為
,且過點
,點P在第四象限, A為左頂點, B為上頂點, PA交y軸于點C,PB交x軸于點D.
(1) 求橢圓 C 的標準方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com