日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標系xOy上取兩個定點A10),A2,0),再取兩個動點N10,m),N20,n),且mn2.

          1)求直線A1N1A2N2交點M的軌跡C的方程;

          2)過R3,0)的直線與軌跡C交于P,Q,過PPNx軸且與軌跡C交于另一點NF為軌跡C的右焦點,若λ1),求證:.

          【答案】11x≠±);(2)證明見解析

          【解析】

          1)根據(jù)題意先寫出兩直線的方程,再根據(jù)條件化簡即可求得答案;

          2)設Px1,y1),Qx2y2),設lxty+3,聯(lián)立直線與橢圓的方程,由韋達定理得y1+y2y1y2,根據(jù)題意得 x13λx23),y1λy2,再代入即可證明結(jié)論.

          1)解:依題意知直線A1N1的方程為:yx①;

          直線A2N2的方程為:yx

          Qx,y)是直線A1N1A2N2交點,①、②相乘,得y2x26

          mn2整理得:1

          N1、N2不與原點重合,可得點A1,A2不在軌跡M上,

          ∴軌跡C的方程為1x≠±;

          2)證明:設lxty+3,代入橢圓方程消去x,得(3+t2y2+6ty+30.

          Px1,y1),Qx2,y2),Nx1,﹣y1),可得y1+y2y1y2,

          ,可得(x13,y1)=λx23y2),∴x13λx23),y1λy2,

          證明,只要證明(2x1,y1)=λx22,y2),∴2x1λx22),

          只要證明,只要證明2t2y1y2+ty1+y2)=0,

          y1+y2y1y2,代入可得2t2y1y2+ty1+y2)=0

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】英國統(tǒng)計學家EH.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):

          法官甲

          法官乙

          終審結(jié)果

          民事庭

          行政庭

          合計

          終審結(jié)果

          民事庭

          行政庭

          合計

          維持

          29

          100

          129

          維持

          90

          20

          110

          推翻

          3

          18

          21

          推翻

          10

          5

          15

          合計

          32

          118

          150

          合計

          100

          25

          125

          記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,則下面說法正確的是

          A. ,,B. ,

          C. ,,D. ,

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)若,求函數(shù)的單調(diào)區(qū)間;

          2)若方程在區(qū)間內(nèi)有解,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)的定義域為,其中.

          1)若,判斷的單調(diào)性;

          2)當,設函數(shù)在區(qū)間上恰有一個零點,求正數(shù)a的取值范圍;

          3)當,時,證明:對于,有.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓,過點,且該橢圓的短軸端點與兩焦點,的張角為直角.

          1)求橢圓E的方程;

          2)過點且斜率大于0的直線與橢圓E相交于點PQ,直線APAQy軸相交于M,N兩點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線ACBD相交于點O,四邊形ACFE為梯形,EF//AC,點E在平面ABCD上的射影為OA的中點,AE與平面ABCD所成角為45°.

          (Ⅰ)求證:BD⊥平面ACF;

          (Ⅱ)求平面DEF與平面ABCD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

          (Ⅰ)求直線的普通方程和曲線的直角坐標方程;

          (Ⅱ)設為曲線上的點,,垂足為,若的最小值為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)是有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

          1)如果函數(shù)的值域為,求b的值;

          2)研究函數(shù)(常數(shù))在定義域內(nèi)的單調(diào)性,并說明理由;

          3)對函數(shù)(常數(shù))作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)n是正整數(shù))在區(qū)間上的最大值和最小值.(可利用你的研究結(jié)論)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線)上的兩個動點,焦點為F.線段AB的中點為,且AB兩點到拋物線的焦點F的距離之和為8.


          1)求拋物線的標準方程;

          2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.

          查看答案和解析>>

          同步練習冊答案