已知分別是橢圓
的左、右頂點,點
在橢圓
上,且直線
與直線
的斜率之積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓
上不同于頂點的兩點,直線
與
交于點
,直線
與
交于點
.①
求證:
;② 若弦
過橢圓的右焦點
,求直線
的方程.
(Ⅰ);(Ⅱ)①見解析;②
.
【解析】
試題分析:(Ⅰ)根據(jù)點在橢圓
上,且直線
與直線
的斜率之積為
,列出方程組即可求出
和
;(Ⅱ)①欲證:
,只需證:
,找到這個結(jié)論成立的條件,然后證明這些條件滿足即可;②分成
和直線
斜率存在兩種情況,利用
經(jīng)過
這一條件,把問題變成直線與橢圓的交點,從而可以借助一元二次方程跟與系數(shù)的關(guān)系解題.
試題解析:(Ⅰ)由題,,由點
在橢圓
上知
,則有:
,①
又,
②
以上兩式可解得,
.所以橢圓
.
4分
(Ⅱ)①
設(shè),則直線
:
、直線
:
,
兩式聯(lián)立消去得:
;
同理:直線:
、
:
,聯(lián)立得:
. 6分
欲證:,只需證:
,只需證:
,
等價于:,
而,
,所以
,
故有:.
9分
② (1)當(dāng)時,由
可求得:
;
10分
(2)當(dāng)直線斜率存在時,設(shè)
:
,
由(Ⅱ)知:,
將,
代入上式得:
,
解得,由①知
.
綜合(1) (1),,故直線
:
.
14分.
考點:直線與橢圓的方程.
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省冀州中學(xué)高二下學(xué)期期末考試理科數(shù)學(xué)(B卷) 題型:解答題
(12分)已知分別是橢圓
的左、右 焦點,已知點
滿足
,且
。設(shè)
是上半橢圓上且滿足
的兩點。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省六校教育研究會高三2月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知
分別是橢圓
的左、右焦點,橢圓
與拋物線
有一個公共的焦點,且過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
相交于
、
兩點,若
(
為坐標(biāo)原點),試判斷直線
與圓
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省高二第二學(xué)期期中考試數(shù)學(xué)(理科)試題 題型:填空題
已知分別是橢圓
的左、右焦點,上頂點為M。若在橢圓上存在一點P,分別連結(jié)PF1,PF2交y軸于A,B兩點,且滿足
,則實數(shù)
的取值范圍為
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆山東省高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
已知分別是橢圓
的左、右
焦點,已知點
滿足
,且
。設(shè)
是上半橢圓上且滿足
的兩點。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com