日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足
          a
          2
          n+1
          =2
          a
          2
          n
          +anan+1
          ,且a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{bn}滿足bn=
          nan
          (2n+1)•2n
          是否存在正整數(shù)m、n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請(qǐng)說明理由.
          分析:(Ⅰ)由
          a
          2
          n+1
          =2
          a
          2
          n
          +anan+1
          ,化簡可得數(shù)列{an}是公比為2的等比數(shù)列,由a2+a4=2a3+4,求出首項(xiàng),即可求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)求出數(shù)列{bn}的通項(xiàng),利用得b1,bm,bn成等比數(shù)列,正整數(shù)m、n(1<m<n),即可得出結(jié)論.
          解答:解:(Ⅰ)因?yàn)?span id="dd1wgur" class="MathJye">
          a
          2
          n+1
          =2
          a
          2
          n
          +anan+1
          所以(an+1+an)(2an-an+1)=0,
          因?yàn)閍n>0,?
          所以有2an-an+1=0,即2an=an+1
          所以數(shù)列{an}是公比為2的等比數(shù)列,?
          由a2+a4=2a3+4得2a1+8a1=8a1+4,解得a1=2.
          從而數(shù)列{an}的通項(xiàng)公式為an=2n.…(6分)
          (II)bn=
          nan
          (2n+1)•2n
          =
          n
          2n+1
          ,
          若b1,bm,bn成等比數(shù)列,則(
          m
          2m+1
          )2=
          1
          3
          n
          2n+1
          ,
          3
          n
          =
          -2m2+4m+1
          m2
          ,
          所以-2m2+4m+1>0,解得:1-
          6
          2
          <m<1+
          6
          2

          又m∈N*,且m>1,所以m=2,此時(shí)n=12.
          故當(dāng)且僅當(dāng)m=2,n=12,使得b1,bm,bn成等比數(shù)列.…(13分)
          點(diǎn)評(píng):本題考查數(shù)列遞推式,考查等比數(shù)列的證明,考查數(shù)列的通項(xiàng),正確運(yùn)用數(shù)列遞推式是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:青島二模 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案