日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(本題滿分12分)已知橢圓過點(diǎn),且離心率為.

          )求橢圓的方程;

          為橢圓的左、右頂點(diǎn),直線軸交于點(diǎn),點(diǎn)是橢圓上異于

          的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).證明:恒為定值.

          【答案】. 為定值.證明見解析。

          【解析】本試題主要是考出了橢圓方程的求解,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系的運(yùn)用的綜合考查,體現(xiàn)了運(yùn)用代數(shù)的方法解決解析幾何的本質(zhì)的運(yùn)用。

          (1)首先根據(jù)題意的幾何性質(zhì)來表示得到關(guān)于a,b,c的關(guān)系式,從而得到其橢圓的方程。

          (2設(shè)出直線方程,設(shè)點(diǎn)P的坐標(biāo),點(diǎn)斜式得到AP的方程,然后聯(lián)立方程組,可知借助于韋達(dá)定理表示出長度,進(jìn)而證明為定值。

          )解:由題意可知,,,

          解得. …………4分

          所以橢圓的方程為. …………5分

          )證明:由()可知,.設(shè),依題意

          于是直線的方程為,令,則.

          . …………7分

          又直線的方程為,令,則,

          . …………9分

          …………11分

          上,所以,即,代入上式,

          ,所以為定值. …………12分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為迎接日的“全民健身日”,某大學(xué)學(xué)生會(huì)從全體男生中隨機(jī)抽取名男生參加米中長跑測試,經(jīng)測試得到每個(gè)男生的跑步所用時(shí)間的莖葉圖(小數(shù)點(diǎn)前一位數(shù)字為莖,小數(shù)點(diǎn)的后一位數(shù)字為葉),如圖,若跑步時(shí)間不高于秒,則稱為“好體能”.

          (Ⅰ) 寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

          (Ⅱ)要從這 人中隨機(jī)選取人,求至少有人是“好體能”的概率;

          (Ⅲ)以這 人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校男生的總體數(shù)據(jù),若從該校男生(人數(shù)眾多)任取人,記表示抽到“好體能”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的圓心軸的正半軸上,半徑為2,且被直線截得的弦長為.

          (1)求圓的方程;

          (2)設(shè)是直線上的動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,證明:經(jīng)過,三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是定義在上的函數(shù).①若存在,使成立,則函數(shù)上單調(diào)遞增;②若存在,使成立,則函數(shù)上不可能單調(diào)遞減;③若存在對(duì)于任意都有成立,則函數(shù)上單調(diào)遞增.則以上述說法正確的是_________.(填寫序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .

          (1)若是函數(shù)的極值點(diǎn),求的值及函數(shù)的極值;

          (2)討論函數(shù)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列命題:

          ①若函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對(duì)稱;

          ②點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為;

          ③通過回歸方程可以估計(jì)和觀測變量的取值和變化趨勢;

          ④正弦函數(shù)是奇函數(shù),是正弦函數(shù),所以是奇函數(shù),上述推理錯(cuò)誤的原因是大前提不正確.

          其中真命題的序號(hào)是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,C上有n個(gè)不同的點(diǎn)P1,P2,…,Pn,設(shè)兩兩連接這些點(diǎn)所得線段PiPj,任意三條在圓內(nèi)都不共點(diǎn),試證它們?cè)趫A內(nèi)共≥4).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】高鐵、網(wǎng)購、移動(dòng)支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):

          每周移動(dòng)支付次數(shù)

          1次

          2次

          3次

          4次

          5次

          6次及以上

          10

          8

          7

          3

          2

          15

          5

          4

          6

          4

          6

          30

          合計(jì)

          15

          12

          13

          7

          8

          45

          (1)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,由以上數(shù)據(jù)完成下列2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為“移動(dòng)支付活躍用戶”與性別有關(guān)?

          移動(dòng)支付活躍用戶

          非移動(dòng)支付活躍用戶

          總計(jì)

          總計(jì)

          100

          (2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶.為了鼓勵(lì)男性用戶使用移動(dòng)支付,對(duì)抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.

          附公式及表如下:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于下列命題:

          ①若是第一象限角,且,則;

          ②函數(shù)是偶函數(shù);

          ③函數(shù)的一個(gè)對(duì)稱中心是;

          ④函數(shù)上是增函數(shù),

          所有正確命題的序號(hào)是_____

          查看答案和解析>>

          同步練習(xí)冊(cè)答案