日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 用數(shù)學(xué)歸納法證明+cosα+cos3α+…+cos(2n-1)α=(k∈Z*,α≠kπ,n∈N+),在驗證n=1時,左邊計算所得的項是   
          【答案】分析:由等式+cosα+cos3α+…+cos(2n-1)α=,當(dāng)n=1時,2n-1=1,而等式左邊起始為的,后面再加上α的連續(xù)的正整數(shù)倍的余弦值的和,由此易得答案.
          解答:解:在等式+cosα+cos3α+…+cos(2n-1)α=中,
          當(dāng)n=1時,2n-1=1,
          而等式左邊起始為的,后面再加上α的連續(xù)的正整數(shù)倍的余弦值的和,
          故n=1時,等式左邊的項為:+cosα,
          故答案為:+cosα.
          點評:本題考查的知識點是數(shù)學(xué)歸納法的步驟,在數(shù)學(xué)歸納法中,第一步是論證n=1時結(jié)論是否成立,此時一定要分析等式兩邊的項,不能多寫也不能少寫,否則會引起答案的錯誤.解此類問題時,注意n的取值范圍.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*)時,從k到k+1,左端需要增加的代數(shù)式是( 。
          A、2k+1
          B、2(2k+1)
          C、
          2k+1
          k+1
          D、
          2k+3
          k+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          用數(shù)學(xué)歸納法證明不等式“
          1
          n+1
          +
          1
          n+2
          +…+
          1
          2n
          13
          24
          (n>2)”時的過程中,由n=k到n=k+1時,不等式的左邊( 。
          A、增加了一項
          1
          2(k+1)
          B、增加了兩項
          1
          2k+1
          +
          1
          2(k+1)
          C、增加了兩項
          1
          2k+1
          +
          1
          2(k+1)
          ,又減少了一項
          1
          k+1
          D、增加了一項
          1
          2(k+1)
          ,又減少了一項
          1
          k+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          2、用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除”的第二步是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          用數(shù)學(xué)歸納法證明n(n+1)(2n+1)能被6整除時,由歸納假設(shè)推證n=k+1時命題成立,需將n=k+1時的原式表示成( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          用數(shù)學(xué)歸納法證明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),從n=k到n=k+1,左邊的式子之比是( 。

          查看答案和解析>>

          同步練習(xí)冊答案