日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在Rt△ABC中,∠B=90°,tanC=,AB=a,在△ABC內作一系列的正方形,求所有這些正方形的面積和S.

          分析:這個題目的關鍵點是每一個小三角形都相似,據此可以寫出Snan的關系式,經過化簡,再求極限.

          解: 設第n個正方形的邊長為an,則由三角形相似,可得(其中Sn=a1+a2+…+an).

          因為AB=a,tanC=,所以BC=2a.

          于是Sn=2a-2an.

          n≥2時,有an=Sn-Sn-1=-2an+2an-1,

          即3an=2an-1,

          因為tanC=,所以AB=a=a1+a1.

          所以a12=

          所以數(shù)列{an2}是首項為,公比為的無窮等比數(shù)列,

          S=(S1+S2+…+Sn)=

          點評:解決與無窮數(shù)列各項和有關的應用問題,關鍵是由題意找準首項、公比,求出前n項和,再求極限.對于形如qn的極限,當|q|<1時,可直接使用qn=0這一運算法則;當|q|>1時,可將分子、分母同除以增長“最快”的項,先轉化形式,再求極限.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網如圖,在Rt△ABC中,∠C=90°,D為BC上一點,∠DAC=30°,BD=2,AB=2
          3
          ,則AC的長為( 。
          A、2
          2
          B、3
          C、
          3
          D、
          3
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
          (1)求證:點E是邊BC的中點;
          (2)若EC=3,BD=2
          6
          ,求⊙O的直徑AC的長度.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點P.
          (1)若AE=CD,點M為BC的中點,求證:直線MP∥平面EAB
          (2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
          2
          2
          .DO⊥AB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
          (1)建立適當?shù)淖鴺讼,求曲線E的方程;
          (2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設
          DM
          DN
          =λ,試確定實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點,將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是(  )
          A、(0,
          3
          ]
          B、(
          2
          2
          ,2]
          C、(
          3
          ,2
          3
          ]
          D、(2,4]

          查看答案和解析>>

          同步練習冊答案