日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線C的中心在原點(diǎn),拋物線y2=2x的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線過點(diǎn)(1,),

          (1)求雙曲線的方程;

          (2)設(shè)直線l:y=kx+1與雙曲線C交于A、B兩點(diǎn),試問:

          ①k為何值時(shí);

          ②是否存在實(shí)數(shù)k,使A、B兩點(diǎn)關(guān)于直線y=mx對稱(m為常數(shù)),若存在,求出k的值;若不存在,請說明理由.

          解析:(1)由題意設(shè)雙曲線方程為=1,

          把(1,)代入得=1.                                                (*)

          又y2=2x的焦點(diǎn)是(,0),故雙曲線的c2=a2+b2=與(*)聯(lián)立,消去b2可得4a2-21a2+5=0,(4a2-1)(a2-5)=0.

          ∴a2=,a2=5(不合題意舍去)

          于是b2=1,∴雙曲線方程為4x2-y2=1;

          (2)由消去y得

          (4-k2)x2-2kx-2=0.                                                          (*)

          當(dāng)Δ>0 即-2<k<2(k≠±2)時(shí),

          l與C有兩個(gè)交點(diǎn)A、B,

          ①設(shè)A(x1,y1),B(x2,y2),

          ,故·=0即x1x2+y1y2=0,

          由(*)知x1+x2=,x1x2=,

          代入可得+k2·+k·+1=0,

          化簡得k2=2,∴k=±,檢驗(yàn)符合條件,故當(dāng)k=±時(shí),.

          ②若存在實(shí)數(shù)k滿足條件,則必須

          由(ⅱ)(ⅲ)得m(x1+x2)=k(x1+x2)+2,

          把x1+x2=代入(ⅰ)得mk=4這與(ⅰ)的km=-1矛盾,故不存在實(shí)數(shù)k滿足條件.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線C的中心在坐標(biāo)原點(diǎn)O,對稱軸為坐標(biāo)軸,點(diǎn)(-2,0)是它的一個(gè)焦點(diǎn),并且離心率為
          2
          3
          3

          (Ⅰ)求雙曲線C的方程;
          (Ⅱ)已知點(diǎn)M(0,1),設(shè)P(x0,y0)是雙曲線C上的點(diǎn),Q是點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn),求
          MP
          MQ
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線C的中心在坐標(biāo)原點(diǎn),漸近線方程是3x±2y=0,左焦點(diǎn)的坐標(biāo)為(-
          13
          ,0)
          ,A、B為雙曲線C上的兩個(gè)動(dòng)點(diǎn),滿足
          OA
          OB
          =0.
          (Ⅰ)求雙曲線C的方程;
          (Ⅱ)求
          1
          |
          OA
          |
          2
          +
          1
          |
          OB
          |
          2
          的值;
          (Ⅲ)動(dòng)點(diǎn)P在線段AB上,滿足
          OP
          AB
          =0,求證:點(diǎn)P在定圓上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,P(1,-2)是C上的點(diǎn),且y=
          2
          x
          是C的一條漸近線,則C的方程為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
          d
          =(1,
          2
          )
          是它的一條漸近線的一個(gè)方向向量.
          (1)求雙曲線C的方程;
          (2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求
          DA
          DB
          的值;
          (3)對于雙曲線Γ:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0,a≠b)
          ,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(M,N都不同于點(diǎn)E),且EM⊥EN,求證:直線MN與x軸的交點(diǎn)是一個(gè)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理) 在平面直角坐標(biāo)系中,已知雙曲線C的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為(
          5
          ,0)
          ,
          e1
          =(2,1)
          、
          e2
          =(2,-1)
          分別是兩條漸近線的方向向量.任取雙曲線C上的點(diǎn)P,其中
          op
          =m
          e1
          +n
          e2
          (m,n∈R),則m,n滿足的一個(gè)等式是
          4mn=1
          4mn=1

          查看答案和解析>>

          同步練習(xí)冊答案