日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)的最大值為g(a).
          (1)設(shè),求t的取值范圍;
          (2)求:g(a)的解析式;
          (3)求:探究g(a)的單調(diào)性和最值.
          【答案】分析:(1)先根據(jù)根號內(nèi)有意義求出自變量的范圍,再對t兩邊平方結(jié)合x的范圍即可求出結(jié)論;
          (2)直接根據(jù)=t2-1即可求出m(t),g(a)即為函數(shù)M(t)=at2+t-a在t∈[,2]的最大值;然后再結(jié)合二次函數(shù)在閉區(qū)間上的最值求法分對稱軸和區(qū)間的三種位置關(guān)系分別討論即可.(注意開口方向)
          (3)①當(dāng)a>-時,g(a)=a+2是增函數(shù),值域為(,+∞);②當(dāng)-時,g(a)=-a-是增函數(shù),g(a)的值域為(,];③當(dāng)a時,g(a)=是常函數(shù),g(a)的值域為{}.由此能求出g(a)的單調(diào)性和最值.
          解答:解:(1)令t=+,
          要使t有意義,必須1+x≥0且1-x≥0,即-1≤x≤1,
          ∴t2=2+2∈[2,4],t≥0.
          ∴t的取值范圍[,2].
          (2)由(1)知,=t2-1
          ∴M(t)=a(t2-1)+t=at2+t-a,(≤t≤2)
          由題意得g(a)即為函數(shù)M(t)=at2+t-a在t∈[,2]的最大值,
          注意到直線t=-是拋物線M(t)的對稱軸,分別分以下情況討論.
          當(dāng)a>0時,y=M(t)在t∈[,2]上單調(diào)遞增,∴g(a)=M(2)=a+2.
          當(dāng)a=0時,M(t)=t,t∈[,2),∴g(a)=2;
          當(dāng)a<0時,函數(shù)y=M(t),t∈[,2]圖象開口向下;
          若t=-∈(0,],即a≤-時,則g(a)=M()=;
          若t=-∈(,2]即-<a≤-時,則g(a)=M(-)=-a-;
          若t=-∈(2,+∞),-<a<0時,則g(a)=M(2)=a+2.
          綜上得:g(a)=
          (3)①當(dāng)a>-時,g(a)=a+2是增函數(shù),值域為(,+∞);
          ②當(dāng)-時,g(a)=-a-是增函數(shù),g(a)的值域為(,];
          ③當(dāng)a時,g(a)=是常函數(shù),g(a)的值域為{}.
          綜上所述,g(a)=的最小值為,無最大值.
          點(diǎn)評:本題主要考察分段函數(shù)的應(yīng)用問題以及分類討論思想的應(yīng)用.解決本題的關(guān)鍵在于第一問中的t的取值范圍不能出錯.而第三問涉及到二次函數(shù)在閉區(qū)間上的最值討論,一定要注意討論對稱軸和區(qū)間的位置關(guān)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)數(shù)學(xué)公式的最大值為g(a).
          (1)設(shè)數(shù)學(xué)公式,求t的取值范圍;
          (2)求:g(a)的解析式;
          (3)求:探究g(a)的單調(diào)性和最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省巢湖市無為中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)的最大值為g(a).
          (1)設(shè),求t的取值范圍;
          (2)求:g(a)的解析式;
          (3)求:探究g(a)的單調(diào)性和最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市江北中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)的最大值為g(a).
          (1)設(shè),求t的取值范圍;
          (2)求g(a).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市萬州二中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)的最大值為g(a).
          (1)設(shè),求t的取值范圍;
          (2)用第(1)問中的t作自變量,把f(x)表示為t的函數(shù)m(t);
          (3)求g(a).

          查看答案和解析>>

          同步練習(xí)冊答案