日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*
          【答案】分析:先設(shè)t=Cn1+2Cn2+3Cn3+…+(r+1)Cnr+…+(n)Cnn再由Cnm=Cnn-m這個性質(zhì),將t轉(zhuǎn)化為t=(n+1)Cn+nCn1+(n-1)Cn2+…+(r+1)Cnr+…+Cnn②,兩式相加求解.
          解答:解:可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x=1處的瞬時變化率,有兩種方案可供選擇:
          ①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)1代入導(dǎo)函數(shù)f′(x)的表達(dá)式;即:
          f′(1)=n(1+1)n-1
          ②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)1代入導(dǎo)函數(shù)f′(x)的表達(dá)式.
          即:f′(1)=Cn1+2Cn2+3Cn3+…nCnn
          綜合①②,可得到恒等式Cn1+2Cn2+3Cn3+…nCnn=n•2n-1
          故答案為:n•2n-1
          點(diǎn)評:本題主要考查二項式系數(shù)及利用組合數(shù)的關(guān)系應(yīng)用倒序相加法求代數(shù)式的值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
          n•2n-1
          n•2n-1
           n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:四川省自貢市2012屆高三第一次診斷性考試數(shù)學(xué)文科試題 題型:022

          要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達(dá)式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達(dá)式.綜合①、②可得到某些恒等式,利用上述思想方法,可得到恒等式:

          _________(n∈N*)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=________ n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年四川省自貢市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

          查看答案和解析>>

          同步練習(xí)冊答案