日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列的前項(xiàng)和為正整數(shù))
          (1)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
          (2)令,,試比較的大小,并予以證明

          (1)見(jiàn)解析;(2)見(jiàn)解析

          解析試題分析:(1)由題意數(shù)列的前項(xiàng)和表達(dá)式,先根據(jù)求數(shù)列的通項(xiàng)的遞推關(guān)系式,再求數(shù)列是等差數(shù)列,根據(jù)等差數(shù)列的通項(xiàng)求數(shù)列的通項(xiàng);(2)由(1)所求數(shù)列的通項(xiàng)先得,再利用錯(cuò)位相減法求得表達(dá)式,再把作差比較大小,可利用數(shù)學(xué)歸納法證明
          試題解析:(I)在中,令n=1,可得,即
          當(dāng)時(shí),,


          數(shù)列是首項(xiàng)和公差均為1的等差數(shù)列
          于是
          (II)由(I)得,所以


          由①-②得


          于是確定的大小關(guān)系等價(jià)于比較的大小

          可猜想當(dāng)證明如下:
          證法1:(1)當(dāng)n=3時(shí),由上驗(yàn)算顯示成立。
          (2)假設(shè)時(shí),,
          所以當(dāng)時(shí)猜想成立,
          綜合(1)(2)可知,對(duì)一切的正整數(shù),都有
          證法2:
          當(dāng)時(shí)
          ,
          綜上所述,當(dāng)時(shí),;當(dāng)時(shí)
          考點(diǎn):1、數(shù)列的通項(xiàng)及前項(xiàng)和;2、錯(cuò)位相減法求和;3、作差比較法

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)各項(xiàng)為正數(shù)的數(shù)列的前和為,且滿足:.等比數(shù)列滿足:.
          (Ⅰ)求數(shù)列,的通項(xiàng)公式;
          (Ⅱ)設(shè),求數(shù)列的前項(xiàng)的和;
          (Ⅲ)證明:對(duì)一切正整數(shù),有.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知數(shù)列,滿足,
          (1)求的值;
          (2)猜想數(shù)列 的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
          (3)己知,設(shè),記,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)數(shù)列滿足,.
          (1)求數(shù)列的通項(xiàng)公式;
          (2)設(shè),求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知數(shù)列中,
          (1)求證:數(shù)列是等差數(shù)列
          (2)求數(shù)列的通項(xiàng)公式
          (3)設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)一切正整數(shù)都成立?若存在,求的最小值,若不存在,試說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知等差數(shù)列的首項(xiàng)為,公差為,且不等式的解集為
          (I)求數(shù)列的通項(xiàng)公式;
          (II)若,求數(shù)列項(xiàng)和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知,點(diǎn)在函數(shù)的圖象上,其中
          (1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
          (2)記,求數(shù)列的前項(xiàng)和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分12分)等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為,等比數(shù)列中,,是公比為64的等比數(shù)列.
          (Ⅰ)求;   
          (Ⅱ)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (文科只做(1)(2)問(wèn),理科全做)
          設(shè)是函數(shù)圖象上任意兩點(diǎn),且,已知點(diǎn)的橫坐標(biāo)為,且有,其中且n≥2,
          (1) 求點(diǎn)的縱坐標(biāo)值;
          (2) 求,,;
          (3)已知,其中,且為數(shù)列的前n項(xiàng)和,若對(duì)一切都成立,試求λ的最小正整數(shù)值。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案