日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,橢圓Q:(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn)。
          (1)求點(diǎn)P的軌跡H的方程;
          (2)在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤),確定θ的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?
          解:如圖,(1)設(shè)橢圓Q:(a>b>0)上的點(diǎn)A(x1,y1)、B(x2,y2),又設(shè)P點(diǎn)坐標(biāo)為P(x,y),

          1°當(dāng)AB不垂直x軸時(shí),x1≠x2
          由(1)-(2)得b2(x1-x2)2x+a2(y1-y2)2y=0

          ∴b2x2+a2y2-b2cx=0(3);
          2°當(dāng)AB垂直于x軸時(shí),點(diǎn)P即為點(diǎn)F,滿足方程(3)
          故所求點(diǎn)P的軌跡方程為:b2x2+a2y2-b2cx=0。
          (2)因?yàn)椋瑱E圓Q右準(zhǔn)線l方程是x=,原點(diǎn)距l(xiāng)的距離為
          由于c2=a2-b2,a2=1+cosθ+sinθ,b2=sinθ(0<θ≤
          ==2sin(+
          當(dāng)θ=時(shí),上式達(dá)到最大值。
          此時(shí)a2=2,b2=1,c=1,D(2,0),|DF|=1
          設(shè)橢圓Q:上的點(diǎn) A(x1,y1)、B(x2,y2),
          三角形ABD的面積S=|y1|+|y2|=|y1-y2|
          設(shè)直線m的方程為x=ky+1,代入中,得
          (2+k2)y2+2ky-1=0
          由韋達(dá)定理得y1+y2=,y1y2=

          令t=k2+1≥1,得
          當(dāng)t=1,k=0時(shí)取等號
          因此,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)到垂直x軸位置時(shí),三角形ABD的面積最大。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (06年江西卷理)(12分)

          如圖,橢圓Q:(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn)

          (1)求點(diǎn)P的軌跡H的方程

          (2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,橢圓Q:(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn)

          (1)       求點(diǎn)P的軌跡H的方程

          (2)       在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,橢圓Q:數(shù)學(xué)公式(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn).
          (1)求點(diǎn)P的軌跡H的方程.
          (2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤數(shù)學(xué)公式),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          21.

              如圖,橢圓Q:=1(a>b>0)的右焦點(diǎn)為F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P為線段AB的中點(diǎn).

              (1)求點(diǎn)P的軌跡H的方程;

              (2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤Equation.3).

              設(shè)軌跡H的最高點(diǎn)和最低點(diǎn)分別為M和N.當(dāng)θ為何值時(shí),△MNF為—個(gè)正三角形?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2006年江西省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,橢圓Q:(a>b>0)的右焦點(diǎn)F(c,0),過點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn).
          (1)求點(diǎn)P的軌跡H的方程.
          (2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

          查看答案和解析>>

          同步練習(xí)冊答案