日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.

          (Ⅰ)求圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說明理由.

          【答案】(1) .

          (2) 不存在這樣的直線.

          【解析】試題分析:(I)用待定系數(shù)法即可求得圓C的標(biāo)準(zhǔn)方程;()首先考慮斜率不存在的情況.當(dāng)斜率存在時(shí),設(shè)直線ly=kx+3A(x1,y1),B(x2y2).l與圓C相交于不同的兩點(diǎn),那么Δ>0.由題設(shè)及韋達(dá)定理可得kx1、x2之間關(guān)系式,進(jìn)而求出k的值.k的值滿足Δ>0,則存在;若k的值不滿足Δ>0,則不存在.

          試題解析:(I)設(shè)圓C(x-a)2+y2=R2(a>0),由題意知

          解得a=1a=, 3

          ∵S=πR2<13,

          ∴a=1

          C的標(biāo)準(zhǔn)方程為:(x-1)2+y2=46

          )當(dāng)斜率不存在時(shí),直線l為:x=0不滿足題意.

          當(dāng)斜率存在時(shí),設(shè)直線ly=kx+3,A(x1,y1),B(x2,y2)

          ∵l與圓C相交于不同的兩點(diǎn),

          聯(lián)立消去y得:(1+k2)x2+(6k-2)x+6=09

          ∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,

          解得

          x1+x2=,y1+ y2=k(x1+x2)+6=,

          ,,

          假設(shè),則

          ,

          解得,假設(shè)不成立.

          不存在這樣的直線l13

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C:y2=2px(p>0)過點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)E作不經(jīng)過原點(diǎn)的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點(diǎn)分別為A,B,求證:直線AB過定點(diǎn)F(1,0).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

          A. 1盞 B. 3盞 C. 5盞 D. 9盞

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】東莞市公交公司為了方便廣大市民出行,科學(xué)規(guī)劃公交車輛的投放,計(jì)劃在某個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車的間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,選取一天中的六個(gè)不同的時(shí)段進(jìn)行抽樣調(diào)查,經(jīng)過統(tǒng)計(jì)得到如下數(shù)據(jù):

          間隔時(shí)間(分鐘)

          8

          10

          12

          14

          16

          18

          等候人數(shù)(人)

          16

          19

          23

          26

          29

          33

          調(diào)查小組先從這6組數(shù)據(jù)中選取其中的4組數(shù)據(jù)求得線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn),檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若兩組差值的絕對(duì)值均不超過1,則稱所求的回歸方程是“理想回歸方程”.

          參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:,

          1)若選取的是前4組數(shù)據(jù),求關(guān)于的線性回歸方程;

          2)判斷(1)中的方程是否是“理想回歸方程”:

          3)為了使等候的乘客不超過38人,試用(1)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少分鐘?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓C: =1(α>b>0)經(jīng)過點(diǎn)( , ),且原點(diǎn)、焦點(diǎn),短軸的端點(diǎn)構(gòu)成等腰直角三角形.
          (1)求橢圓E的方程;
          (2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個(gè)交點(diǎn)A,B.且 ?若存在,求出該圓的方程,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠為檢驗(yàn)車間一生產(chǎn)線工作是否正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測量它們的尺寸(單位:)并繪成頻率分布直方圖,如圖所示.根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件尺寸服從正態(tài)分布,其中近似為零件樣本平均數(shù)近似為零件樣本方差.

          (1)求這批零件樣本的的值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

          (2)假設(shè)生產(chǎn)狀態(tài)正常,求;

          (3)若從生產(chǎn)線中任取一零件,測量其尺寸為,根據(jù)原則判斷該生產(chǎn)線是否正常?

          附:;若,則, ,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定圓,動(dòng)圓過點(diǎn) 且與圓相切,記圓心的軌跡為

          (1)求曲線的方程;

          (2)已知直線 交圓兩點(diǎn).是曲線上兩點(diǎn),若四邊形的對(duì)角線,求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,如表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如表1

          年份x

          2011

          2012

          2013

          2014

          2015

          儲(chǔ)蓄存款y(千億元)

          5

          6

          7

          8

          10

          為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,得到表2:

          時(shí)間代號(hào)t

          1

          2

          3

          4

          5

          z

          0

          1

          2

          3

          5

          (1)求z關(guān)于t的線性回歸方程;

          (2)通過(1)中的方程,求出y關(guān)于x的回歸方程;

          (3)用所求回歸方程預(yù)測到2010年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

          附:對(duì)于線性回歸方程,

          其中, .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):

          單價(jià)(元)

          18

          19

          20

          21

          22

          銷量(冊(cè))

          61

          56

          50

          48

          45

          (l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

          (2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每冊(cè)書的成本是12元,書店為了獲得最大利潤,該冊(cè)書的單價(jià)應(yīng)定為多少元?

          附:,,.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案