日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有
          ①④
          ①④

          ①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
          ②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
          ③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
          ④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.
          分析::①根據(jù)“凸值數(shù)列”的定義,可得遞減數(shù)列{an}的“凸值數(shù)列”為a1,a1,…,a1
          ②常數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
          ③遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
          ④寫出“凸值數(shù)列”為1,3,3,9的所有數(shù)列{an},即可得到結(jié)論.
          解答:解:①根據(jù)“凸值數(shù)列”的定義,可得遞減數(shù)列{an}的“凸值數(shù)列”為a1,a1,…,a1,∴是常數(shù)列,∴①正確;
          ②常數(shù)列{an},它的“凸值數(shù)列”還是{an}本身,∴②不正確;
          ③遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列,∴③不正確;
          ④“凸值數(shù)列”為1,3,3,9的所有數(shù)列{an}為1,3,1,9;1,3,2,9,;1,3,3,9,個數(shù)為3,∴④正確.
          故答案為①④
          點評:本題主要考查“凸值數(shù)列”的定義,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分數(shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
          (Ⅰ)已知數(shù)列{an}的通項公式an=
          5
          2
          n2-
          13
          2
          n(n∈N*),試證明{△an}是等差數(shù)列;
          (Ⅱ)若數(shù)列{an}的首項a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式;
          (Ⅲ)在(Ⅱ)的條件下,記bn=
          a1(n=1)
          2n-1
          an
          (n≥2,n∈N*)
          ,求證:b1+
          b2
          2
          +…+
          bn
          n
          17
          12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          8、對于數(shù)列{an},若存在常數(shù)M,使得對任意n∈N*,an與an+1中至少有一個不小于M,則記作{an}?M,那么下列命題正確的是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于數(shù)列{an},定義數(shù)列{bm}如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
          (Ⅰ)設(shè){an}是單調(diào)遞增數(shù)列,若a3=4,則b4=
           

          (Ⅱ)若數(shù)列{an}的通項公式為an=2n-1,n∈N*,則數(shù)列{bm}的通項是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•上海一模)觀察數(shù)列:
          ①1,-1,1,-1,…;
          ②正整數(shù)依次被4除所得余數(shù)構(gòu)成的數(shù)列1,2,3,0,1,2,3,0,…;
          ③an=tan
          3
          ,n=1,2,3,…
          (1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果
          存在正整數(shù)T
          存在正整數(shù)T
          ,對于一切正整數(shù)n都滿足
          an+T=an
          an+T=an
          成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;
          (2)若數(shù)列{an}滿足an+2=an+1-an,n∈N*,Sn為{an}的前n項和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008;
          (3)若數(shù)列{an}的首項a1=p,p∈[0,
          1
          2
          ),且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•通州區(qū)一模)對于數(shù)列{an},從第二項起,每一項與它前一項的差依次組成等比數(shù)列,稱該等比數(shù)列為數(shù)列{an}的“差等比數(shù)列”,記為數(shù)列{bn}.設(shè)數(shù)列{bn}的首項b1=2,公比為q(q為常數(shù)).
          (I)若q=2,寫出一個數(shù)列{an}的前4項;
          (II)(ⅰ)判斷數(shù)列{an}是否為等差數(shù)列,并說明你的理由;
          (ⅱ)a1與q滿足什么條件,數(shù)列{an}是等比數(shù)列,并證明你的結(jié)論;
          (III)若a1=1,1<q<2,數(shù)列{an+cn}是公差為q的等差數(shù)列(n∈N*),且c1=q,求使得cn<0成立的n的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案