日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8、設(shè)f(x)是定義在R上的函數(shù),且對任意實數(shù)x、y都有f(x+y)=f(x)+f(y).求證:
          (1)f(x)是奇函數(shù);
          (2)若當(dāng)x>0時,有f(x)>0,則f(x)在R上是增函數(shù).
          分析:(1)判斷f(x)奇偶性,即找出f(-x)與f(x)之間的關(guān)系,∴令y=-x,有f(0)=f(x)+f(-x),故問題轉(zhuǎn)化為求f(0)即可,可對x、y都賦值為0;
          (2)依據(jù)函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性,充分利用條件當(dāng)x>0時,有f(x)>0與f(x+y)=f(x)+f(y),即可判定單調(diào)性.
          解答:解:(1)顯然f(x)的定義域是R,關(guān)于原點對稱.
          又∵函數(shù)對一切x、y都有f(x+y)=f(x)+f(y),
          ∴令x=y=0,得f(0)=2f(0),∴f(0)=0.
          再令y=-x,得f(0)=f(x)+f(-x),
          ∴f(-x)=-f(x),
          ∴f(x)為奇函數(shù).
          (2)任取x1<x2,x2-x1>0,則f(x2-x1)>0
          ∴f(x2)+f(-x1)>0;
          對f(x+y)=f(x)+f(y)取x=y=0得:f(0)=0,
          再取y=-x得f(x)+f(-x)=0即f(-x)=-f(x),
          ∴有f(x2)-f(x1)>0
          ∴f(x2)>f(x1
          ∴f(x)在R上遞增.
          點評:本題考點是抽象函數(shù)及其性質(zhì),在研究其奇偶性時本題采取了連續(xù)賦值的技巧,這是判斷抽象函數(shù)性質(zhì)時常用的一種探究的方式,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
          -2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=2x+2x-1,則f(-1)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當(dāng)x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
          1
          2
           )=2
          ,則f(1)+f(
          3
          2
          )+f(2)+f(
          5
          2
          )+f(3)+f(
          7
          2
          )
          =
          -2
          -2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時,f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時的解析式為(  )
          A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

          查看答案和解析>>

          同步練習(xí)冊答案