日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù);

          ()若m=1,求證 在(0+∞)上單調(diào)遞增;

          ()若,試討論g(x)零點(diǎn)的個(gè)數(shù).

          【答案】(1)見解析(2) 當(dāng)m<1時(shí),g(x)沒有零點(diǎn);m=1時(shí),g(x)有一個(gè)零點(diǎn);m>1時(shí),g(x)有兩個(gè)零點(diǎn)

          【解析】試題分析:(Ⅰ) m=1時(shí), ,要證上單調(diào)遞增,只要證: 對(duì)x>0恒成立,令,通過求導(dǎo)可證得,通過求導(dǎo)可證得,所以即得證;

          (Ⅱ) 由,顯然是增函數(shù),令,得∴g(x)在(0,x0]上是減函數(shù),在[x0,+∞)上是増函數(shù),∴g(x)有極小值,g(x0) =,分情況討論

          ①當(dāng)m=1時(shí)②m<1時(shí)③當(dāng)m>1時(shí)三種情況通過求導(dǎo)研究單調(diào)性,最值即可得解.

          試題解析:

          (Ⅰ)m=1時(shí), ,

          要證上單調(diào)遞增,只要證: 對(duì)x>0恒成立,

          ,則,當(dāng)時(shí), ,

          當(dāng)x<1時(shí), ,故上單調(diào)遞減,在上單調(diào)遞增

          所以,即 (當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立),

          ,則,

          當(dāng)0<x<1時(shí), ,當(dāng)時(shí), ,故j(x)在(0,1)上單調(diào)遞減,在上單調(diào)遞增,

          所以,即 (當(dāng)且僅當(dāng)x =1時(shí)取等號(hào)),

          (當(dāng)且僅當(dāng)x =1時(shí)等號(hào)成立)

          上單調(diào)遞增.

          (Ⅱ)由,顯然是增函數(shù),

          ,得

          時(shí), 時(shí), ,

          ∴g(x)在(0,x0]上是減函數(shù),在[x0,+∞)上是増函數(shù),

          ∴g(x)有極小值,g(x0) =

          ①當(dāng)m=1時(shí), ,g(x)極小值=g(1) =0,g(x)有一個(gè)零點(diǎn)1;

          ②m<1時(shí),0<x0<1, ,g(x)沒有零點(diǎn);

          ③當(dāng)m>1時(shí),x0>1,g(x0)<1-0-1=0,又

          又對(duì)于函數(shù)時(shí),

          ∴當(dāng)x>0時(shí),y>1-0-1 = 0,即,

          g(3m) = ,

          ,則,

          m>1, ,t(m)>t(1)==2-ln3>0g(3m)>0,

          有兩個(gè)零點(diǎn),

          綜上,當(dāng)m<1時(shí),g(x)沒有零點(diǎn);m=1時(shí),g(x)有一個(gè)零點(diǎn);m>1時(shí),g(x)有兩個(gè)零點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某林業(yè)部門為了保證植樹造林的樹苗質(zhì)量,對(duì)甲、乙兩家供應(yīng)的樹苗進(jìn)行根部直徑檢測(cè),現(xiàn)從兩家供應(yīng)的樹苗中各隨機(jī)抽取10株樹苗檢測(cè),測(cè)得根部直徑如下(單位:mm):

          27

          11

          21

          10

          19

          09

          22

          13

          15

          23

          15

          20

          27

          17

          21

          14

          16

          18

          24

          18

          1)畫出甲、乙兩家抽取的10株樹苗根部直徑的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩家樹苗進(jìn)行比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;

          2)設(shè)抽測(cè)的10株乙家樹苗根部直徑的平均值為,將這10株樹苗直徑依次輸入程序框圖中,求輸出的S的值,并說明其統(tǒng)計(jì)學(xué)的意義.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 是自然對(duì)數(shù)的底數(shù)的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是()

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在棱長(zhǎng)均為4的三棱柱中, 分別是的中點(diǎn).

          (1)求證: 平面

          (2)若平面平面,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱ABC—A1B1C1中,側(cè)面AA1B1B是正方形,AC丄側(cè)面AA1B1B,AC=AB,點(diǎn)E是B1C1的中點(diǎn).

          (Ⅰ)求證:C1A∥平面EBA1;

          (Ⅱ)若EF丄BC1,垂足為F,求二面角B—AF—A1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是橢圓上一點(diǎn), 為橢圓的兩焦點(diǎn),且,則面積為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

          分組

          頻數(shù)

          頻率

          [10,15)

          10

          0.25

          [15,20)

          25

          n

          [20,25)

          m

          p

          [25,30)

          2

          0.05

          合計(jì)

          M

          1

          (1)求出表中M,p及圖中a的值;

          (2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

          (3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請(qǐng)列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在各棱長(zhǎng)均為的三棱柱中,側(cè)面底面, .

          (1)求側(cè)棱與平面所成角的正弦值的大小;

          (2)已知點(diǎn)滿足,在直線上是否存在點(diǎn),使平面?若存在,請(qǐng)確定點(diǎn)的位置,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】的內(nèi)角的對(duì)邊分別為,已知.

          (1)求

          (2)若, 成等差數(shù)列,求的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案