日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一個(gè)棱柱的直觀圖和三視圖(主視圖和俯視圖是邊長(zhǎng)為a的正方形,左視圖是直角邊長(zhǎng)為a的等腰三角形)如圖所示,其中M、N分別是AB、AC的中點(diǎn),G是DF上的一動(dòng)點(diǎn).
          (Ⅰ)求證:GN⊥AC;
          (Ⅱ)求三棱錐F-MCE的體積;
          (Ⅲ)當(dāng)FG=GD時(shí),證明AG∥平面FMC.

          【答案】分析:(Ⅰ)由三視圖易得該幾何體是一個(gè)底面為等腰直角三角形的直三棱柱,且側(cè)面積ABCD是正方形,根據(jù)已知,我們易得AC⊥面ABCD
          ,進(jìn)而得到GN⊥AC.
          (Ⅱ)利用轉(zhuǎn)化思想,我們可得VE-FMC=VADF-BCE-VF-AMCD-VE-MBC,把相應(yīng)的棱長(zhǎng)代入體積公式,即可得到結(jié)論.
          (Ⅲ)連接DE交FC于Q,連接QG,我們易得AM∥GQ,根據(jù)線面平行的判定定理,我們易得結(jié)論.
          解答:解:(Ⅰ)由三視圖可知,多面體是直三棱柱,
          兩底面是直角邊長(zhǎng)為a的等腰直角三角形,
          側(cè)面ABCD,CDFE是邊長(zhǎng)為a的正方形.(3分)
          連接DN,因?yàn)镕D⊥CD,F(xiàn)D⊥AD,
          所以,F(xiàn)D⊥面ABCD
          ∴FD⊥AC
          又∵AC⊥DN,
          所以,AC⊥面GND,
          GN?面GND
          所以GN⊥AC(6分)
          (Ⅱ)VE-FMC=VADF-BCE-VF-AMCD-VE-MBC.(12分)
          =
          =
          =.(14分)
          另解:
          (Ⅲ)連接DE交FC于Q,連接QG
          因?yàn)镚,Q,M分別是FD,F(xiàn)C,AB的中點(diǎn),所以GQ∥,AM∥,
          所以,AM∥GQ,AMGQ是平行四邊形(9分)
          AG∥QM,AG?面FMC,MQ?面FMC
          所以,AG∥平面FMC.(10分)
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖判斷物體的形狀,線面、線線垂直的轉(zhuǎn)化,棱錐體積的求法,線面平行的證明,其中根據(jù)三視圖判斷棱柱相關(guān)棱長(zhǎng)的長(zhǎng)度及相互之間的關(guān)系是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)一個(gè)棱柱的直觀圖和三視圖(主視圖和俯視圖是邊長(zhǎng)為a的正方形,左視圖是直角邊長(zhǎng)為a的等腰三角形)如圖所示,其中M、N分別是AB、AC的中點(diǎn),G是DF上的一動(dòng)點(diǎn).
          (Ⅰ)求證:GN⊥AC;
          (Ⅱ)求三棱錐F-MCE的體積;
          (Ⅲ)當(dāng)FG=GD時(shí),證明AG∥平面FMC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          下列三個(gè)圖中,左邊是一個(gè)橫放的正三棱柱的直觀圖,右邊兩個(gè)是主視圖和左視圖.
          (Ⅰ)請(qǐng)?jiān)谥饕晥D下方,按照畫三視圖的要求畫出該正三棱柱的俯視圖(不要求敘述作圖過程);
          (Ⅱ)求該正三棱柱的表面積和體積(尺寸如圖).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          一個(gè)三棱柱的直觀圖和三視圖如圖所示(主視圖、俯視圖都是矩形,左視圖是直角三角形),設(shè)為線段上的點(diǎn).

                 (1)求幾何體的體積;

                 (2)是否存在點(diǎn)E,使平面平面,若存在,求AE的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省青島市平度一中高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          一個(gè)棱柱的直觀圖和三視圖(主視圖和俯視圖是邊長(zhǎng)為a的正方形,左視圖是直角邊長(zhǎng)為a的等腰三角形)如圖所示,其中M、N分別是AB、AC的中點(diǎn),G是DF上的一動(dòng)點(diǎn).
          (Ⅰ)求證:GN⊥AC;
          (Ⅱ)求三棱錐F-MCE的體積;
          (Ⅲ)當(dāng)FG=GD時(shí),證明AG∥平面FMC.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案