【題目】如圖,在四邊形中,
,
,
,
與
交于點(diǎn)
,若
平面
,
.
(1)求證:;
(2)求二面角的大;
(3)求異面直線所成的角的大小.
【答案】(1) 證明見解析; (2) ; (3)
【解析】
(1)由條件可得,又有
,則
平面
,從而可證.
(2)建立空間坐標(biāo)系,分別求出平面和平面
的法向量,從而求出答案.
(3) 建立空間坐標(biāo)系,求出向量的坐標(biāo),利用向量的方法求出答案.
(1) 平面
,且
平面
所以,又
,且
所以平面
,又
平面
所以.
(2)由,
平面
以為原點(diǎn),
分別為
軸,建立空間直角坐標(biāo)系,如圖
在三角形中,
,則
為正三角形,
因?yàn)?/span>與
交于點(diǎn)
,
,即
又因?yàn)?/span>中,
,所以
邊
的中點(diǎn),
所以
由,
,則
,
在直角三角形中,
,
,所以
.
,
,
設(shè)平面的一個法向量
,
,
則 即
取,則
設(shè)平面的一個法向量
,
則 即
取,則
由
,
所以二面角的大小為
(3) ,
所以異面直線所成的角的大小為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過兩點(diǎn)A(0,4),B(4,6),且圓心在直線x﹣2y﹣2=0上.
(1)求圓C的方程;
(2)若直線l過原點(diǎn)且被圓C截得的弦長為6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟(jì)覆蓋的范圍迅速擴(kuò)張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計(jì)劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農(nóng)家樂”跟蹤調(diào)查了天.得到的統(tǒng)計(jì)數(shù)據(jù)如下表,
為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),
為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)
與“入住率”
的散點(diǎn)圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農(nóng)家樂”中隨機(jī)抽取兩家深入調(diào)查,記為“入住率”超過
的農(nóng)家樂的個數(shù),求
的概率分布列;
(2)令,由散點(diǎn)圖判斷
與
哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(
結(jié)果保留一位小數(shù))
(3)若一年按天計(jì)算,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時,年銷售額
最大?(年銷售額
入住率
收費(fèi)標(biāo)準(zhǔn)
)
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左右焦點(diǎn)分別為
、
,左右頂點(diǎn)分別是
、
,長軸長為
,
是以原點(diǎn)為圓心,
為半徑的圓的任一條直徑,四邊形
的面積最大值為
.
(1)求橢圓的方程;
(2)不經(jīng)過原點(diǎn)的直線:
與橢圓交于
、
兩點(diǎn),
①若直線與
的斜率分別為
,
,且
,求證:直線
過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
②若直線的斜率是直線
、
斜率的等比中項(xiàng),求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求橢圓的極坐標(biāo)方程和直線
的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為
,直線
與橢圓
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上動點(diǎn)
與定點(diǎn)
的距離和它到定直線
的距離的比是常數(shù)
,若過
的動直線
與曲線
相交于
兩點(diǎn)
(1)說明曲線的形狀,并寫出其標(biāo)準(zhǔn)方程;
(2)是否存在與點(diǎn)不同的定點(diǎn)
,使得
恒成立?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
為矩形,
平面
,
為
上的一點(diǎn),
平面
;
(1)求證:為
的中點(diǎn);
(2)求證:
(3)設(shè)二面角為60°,
,
,求
長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓
截直線
所得的線段的長度為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
交于
兩點(diǎn),點(diǎn)
是橢圓
上的點(diǎn),
是坐標(biāo)原點(diǎn),若
,判定四邊形
的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)橢圓
的左焦點(diǎn)為
,左準(zhǔn)線為
為橢圓
上任意一點(diǎn),直線
,垂足為
,直線
與
交于點(diǎn)
.
(1)若,且
,直線
的方程為
.①求橢圓
的方程;②是否存在點(diǎn)
,使得
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
(2)設(shè)直線與圓
交于
兩點(diǎn),求證:直線
均與圓
相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com