(本小題12分)已知數(shù)列是各項均不為
的等差數(shù)列,公差為
,
為其前
項和,且滿足
,
.?dāng)?shù)列
滿足
,
為數(shù)列
的前n項和.
(Ⅰ)求數(shù)列的通項公式
和數(shù)列
的前n項和
;
(Ⅱ)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(1),
(2)
解析試題分析:解(1)在中,令
,
,
得 即
解得,
,
又時,
滿足
,
………………3分
,
. ………………6分
(2)①當(dāng)為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在
時取得.
此時
需滿足
. …………………………………………8分
②當(dāng)為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨
的增大而增大,
時
取得最小值
.
此時
需滿足
. …………………………………………11分
綜合①、②可得的取值范圍是
. ………………………………………12分
考點(diǎn):本試題考查了數(shù)列的通項公式和數(shù)列求和求解。
點(diǎn)評:對于等差數(shù)列求解通項公式,主要求解兩個基本元素,首項和公差即可。同時對于數(shù)列的求和中裂項求和要給予關(guān)注,高考?疾,而對于數(shù)列與不等式恒成立結(jié)合的問題,通常情況下,采用分離的思想來得到范圍,屬于難度試題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
對任意
都有
(Ⅰ)求和
的值.
(Ⅱ)數(shù)列滿足:
=
+
,數(shù)列
是等差數(shù)列嗎?請給予證明;
(Ⅲ)令試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列的前
項和為
,滿足
.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足
,
為數(shù)列
的前
項和,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知數(shù)列滿足
.
(1)設(shè),證明:數(shù)列
為等差數(shù)列,并求數(shù)列
的通項公式;
(2)求數(shù)列的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列中,
,數(shù)列
滿足
。
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列中的最大項和最小項,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
正項單調(diào)數(shù)列的首項為
,
時,
,數(shù)列
對任意
均有
(1)求證:數(shù)列是等差數(shù)列;
(2)已知,數(shù)列
滿足
,記數(shù)列
的前
項和為
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知二次函數(shù)同時滿足:①不等式
的解集有且只有一個元素;②在定義域內(nèi)存在
,使得不等式
成立.
設(shè)數(shù)列的前
項和
,
(1)求數(shù)列的通項公式;
(2)數(shù)列中,令
,
,求
;
(3)設(shè)各項均不為零的數(shù)列中,所有滿足
的正整數(shù)
的個數(shù)稱為這個數(shù)列
的變號數(shù)。令
(
為正整數(shù)),求數(shù)列
的變號數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,點(diǎn)
在函數(shù)
的圖象上,其中
(1)求;
(2)證明數(shù)列是等比數(shù)列;
(3)設(shè),求
及數(shù)列
的通項
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com