日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知線段的端點,端點在圓上運動

          ()求線段的中點的軌跡方程.

          () 設(shè)動直線與圓交于兩點,問在軸正半軸上是否存在定點,使得直線與直線關(guān)于軸對稱?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

          【答案】(1);(2)當(dāng)點時,直線與直線關(guān)于x軸對稱.

          【解析】試題分析:

          () 設(shè)點C的坐標(biāo)為,利用相關(guān)點法結(jié)合中點坐標(biāo)公式可得,整理化簡可得C的軌跡方程為;

          () 設(shè),聯(lián)立直線與圓的方程可得,滿足直線與直線關(guān)于軸對稱時,據(jù)此可得,結(jié)合韋達(dá)定理得到關(guān)于實數(shù)t的方程,解方程有,即當(dāng)點時,直線與直線關(guān)于x軸對稱.

          試題解析:

          設(shè)點C的坐標(biāo)為,利用中點坐標(biāo)公式可得,點A在圓上,則: ,化簡可得其軌跡方程為

          設(shè),

          得, ,

          所以

          若直線與直線關(guān)于軸對稱,則,

          所以當(dāng)點時,直線與直線關(guān)于軸對稱.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)判斷并證明函數(shù)的單調(diào)性;
          (2)求此函數(shù)的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多

          生產(chǎn)100件.生產(chǎn)x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤等于收入與成本之差.

          (1)求出利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x);

          (2)分別求利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x)的最大值;

          (3)你認(rèn)為本題中邊際利潤函數(shù)Mp(x)最大值的實際意義是什么?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷函數(shù)的奇偶性,并證明你的結(jié)論;

          (3)在函數(shù)圖像上是否存在兩個不同的點,使直線垂直軸,若存在,求出兩點坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

          (1)求證: 平面

          (2)求證: 平面;

          (3)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的方程為: 。

          (1)求圓的圓心所在直線方程一般式;

          (2)若直線被圓截得弦長為,試求實數(shù)的值;

          (3)已知定點且點是圓上兩動點,當(dāng)可取得最大值為時,求滿足條件的實數(shù)的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知右焦點為F(c,0)的橢圓M: =1(a>b>0)過點 ,且橢圓M關(guān)于直線x=c對稱的圖形過坐標(biāo)原點.
          (1)求橢圓M的方程;
          (2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關(guān)于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中, , ,平面底面 ,

          分別是的中點,求證:

          (1)平面;

          (2);

          (3)平面平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 是圓柱的母線, 的直徑, 是底面圓周上異于的任意一點, , .

          (1)求證:

          (2)當(dāng)三棱錐的體積最大時,求與平面所成角的大小;

          (3)上是否存在一點,使二面角的平面角為45°?若存在,求出此時的長;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案