日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C1方程為=1(ab>0),離心率為,兩個焦點分別為F1F2,橢圓C1上一點到F1F2的距離之和為12.橢圓C2的方程為=1.圓Ckx2y2+2kx-4y21=0(k∈R)的圓心為點Ak.

          (1)求橢圓C1的方程;

          (2)求△AkF1F2的面積;

          (3)若點P為橢圓C2上的動點,點M為過點P且垂直于x軸的直線上的點,e(e為橢圓C2的離心率),求點M的軌跡.

          解:(1)設(shè)橢圓C1的半焦距為c,則

          解得a=6,c=3,

          于是b2a2c2=36-27=9,

          因此所求橢圓C1的方程為=1.

          (2)點Ak的坐標為(-k,2),

          SAkF1F2×F1F2×2=×6×2=6.

          (

          軌跡是兩條平行于x軸的線段.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C1的方程為
          x2
          4
          +y2=1,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
          (Ⅰ)求雙曲線C2的方程;
          (Ⅱ)若直線l:y=kx+
          2
          與橢圓C1及雙曲線C2都恒有兩個不同的交點,且l與C2的兩個交點A和B滿足
          OA
          OB
          <6(其中O為原點),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C1的方程為
          x2
          4
          +y2=1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
          (1)求雙曲線C2的方程;
          (2)若直線l:y=kx+
          2
          與雙曲線C2恒有兩個不同的交點A和B,且
          OA
          OB
          >2(其中O為原點),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C1的方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,離心率為
          3
          2
          ,兩個焦點分別為F1和F2,橢圓C1上一點到F1和F2的距離之和為12,橢圓C2的方程為
          x2
          (a-2)2
          +
          y2
          b2-1
          =1
          ,圓C3:x2+y2+2kx-4y-21=0(k∈R)的圓心為點Ak
          (I)求橢圓C1的方程;
          (II)求△AkF1F2的面積;
          (III)若點P為橢圓C2上的動點,點M為過點P且垂直于x軸的直線上的點,
          |OP|
          |OM|
          =e
          (e為橢圓C2的離心率),求點M的軌跡.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C1的方程為
          x24
          +y2=1
          ,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
          (1)求雙曲線C2的方程;
          (2)設(shè)過定點M(0,2)的直線l與橢圓C1交于不同的兩點A、B,且滿足|OA|2+|OB|2>|AB|2,(其中O為原點),求l斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C1的方程為
          x2
          4
          +y2=1
          ,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
          (1)求雙曲線C2的方程;
          (2)若直線l:y=kx+
          2
          與雙曲線C2恒有兩個不同的交點A和B,且
          OA
          OB
          >2
          (其中O為原點),求k的范圍.
          (3)試根據(jù)軌跡C2和直線l,設(shè)計一個與x軸上某點有關(guān)的三角形形狀問題,并予以解答(本題將根據(jù)所設(shè)計的問題思維層次評分).

          查看答案和解析>>

          同步練習冊答案