日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若實(shí)數(shù)x、y滿足不等式組
          x≥1
          y≥x-1
          x-2y+2≥0
          ,則z=2x+y的最大值為
          11
          11
          分析:根據(jù)已知的約束條件 畫(huà)出滿足約束條件的可行域,再用目標(biāo)函數(shù)的幾何意義,求出目標(biāo)函數(shù)的最值,即可求解比值.
          解答:解:約束條件 對(duì)應(yīng)的平面區(qū)域如下圖示:
          由z=2x+y可得y=-2x+z,則z表示直線z=2x+y在y軸上的截距,截距越大,z越大
          x-2y+2=0
          y=x-1
          可得A(4,3)
          當(dāng)直線z=2x+y過(guò)A(4,3)時(shí),Z取得最大值11
          故答案為:11
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是線性規(guī)劃,考查畫(huà)不等式組表示的可行域,考查數(shù)形結(jié)合求目標(biāo)函數(shù)的最值.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足
          f(x1)-f(x2)
          x1-x2
          <0
          ,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),
          y
          x
          的取值范圍為
          [-
          1
          2
          ,1]
          [-
          1
          2
          ,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案