日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BEAF,BCAD,AFABBC=2,AD=1.

          (1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;

          (2)求二面角FCDA的余弦值.

          【答案】(1)見解析(2)

          【解析】試題分析:(1)推導出平面BCE平面ADF.設平面DFC平面BCE=l,則l過點C.由平面BCE平面ADF,平面DFC平面BCE=l,得到DFl,由此能證明在平面BCE上一定存在過點C的直線l,使得DFl.(2)以A為原點,AD,AB,AF分別為x軸,y軸,z軸建立空間直角坐標系,利用向量法能求出二面角FCDA的余弦值.

          試題解析:

          (1)證明:由已知得,BEAF,BE平面AFD,AF平面AFD,

          BE平面AFD.

          同理可得,BC平面AFD.

          BEBCB,∴平面BCE平面AFD.

          設平面DFC平面BCEl,則l過點C.

          平面BCE平面ADF,平面DFC平面BCEl,平面DFC平面AFDDF

          DFl,即在平面BCE上一定存在過點C的直線l,使得DFl.

          (2)∵平面ABEF平面ABCD,平面ABCD平面ABEFAB,FA平面ABEF

          FAB=90°,∴AFAB,∴AF平面ABCD.

          AD平面ABCD,∴AFAD.

          ∵∠DAB=90°,∴ADAB.

          A為坐標原點,AD,ABAF所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,由已知得,D(1,0,0),C(2,2,0),F(0,0,2),∴=(-1,0,2),=(1,2,0).

          設平面DFC的法向量為n=(x,y,z),

          z=1,則n=(2,-1,1),

          不妨取平面ACD的一個法向量為m=(0,0,1),

          ∴cos〈m,n〉=,

          由于二面角FCDA為銳角,

          因此二面角FCDA的余弦值為.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知離心率為的橢圓焦點在軸上,且橢圓個頂點構成的四邊形面積為,過點的直線與橢圓相交于不同的兩點、.

          (1)求橢圓的方程;

          (2)設為橢圓上一點,且為坐標原點).求當時,實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,四棱錐的底面是矩形,側面是正三角形,,,.

          (1)求證:平面平面

          (2)若中點,求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).

          (1)求甲、乙兩人成績的平均數(shù)和中位數(shù);

          (2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,正三棱柱中,已知,分別為的中點,點上,且求證:

          (1)直線平面

          (2)直線平面

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,圓

          (Ⅰ)若圓C與x軸相切,求圓C的方程;

          (Ⅱ)已知,圓與x軸相交于兩點(點在點的左側).過點任作一條直線與圓相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,島、相距海里上午9點整有一客輪在島的北偏西且距島 海里的沿直線方向勻速開往島,在島停留分鐘后前往市.上午測得客輪位于島的北偏西且距島 海里的,此時小張從島乘坐速度為海里/小時的小艇沿直線方向前往島換乘客輪去市.

          )若,問小張能否乘上這班客輪?

          )現(xiàn)測得 已知速度為海里/小時()的小艇每小時的總費用為()元,若小張由島直接乘小艇去市,則至少需要多少費用?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在三棱錐S-ABC中,平面SAB⊥平面SBCABBC,AS=AB,點EF,G分別在棱SA,SBSC上,且平面EFG∥平面ABC,點ESA的中點.求證:

          (Ⅰ)AF⊥平面SBC;

          (Ⅱ)SABC

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】據(jù)統(tǒng)計,某5家鮮花店今年4月的銷售額和利潤額資料如下表:

          鮮花店名稱

          A

          B

          C

          D

          E

          銷售額x(千元)

          3

          5

          6

          7

          9

          利潤額y(千元)

          2

          3

          3

          4

          5

          1)用最小二乘法計算利潤額y關于銷售額x的回歸直線方程=x+;

          2)如果某家鮮花店的銷售額為8千元時,利用(1)的結論估計這家鮮花店的利潤額是多少.

          參考公式:回歸方程中斜率和截距的最小二乘法估計值公式分別為

          查看答案和解析>>

          同步練習冊答案