日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A:如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于點(diǎn)D,BC=4cm,
          (1)試判斷OD與AC的關(guān)系;
          (2)求OD的長(zhǎng);
          (3)若2sinA-1=0,求⊙O的直徑.
          B:(選修4-4)已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角
          (1)寫出直線l的參數(shù)方程;
          (2)設(shè)l與圓x2+y2=4相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

          【答案】分析:A:(1)根據(jù)直徑所對(duì)的圓周角為直角,以及三角形的中位線定理,可得AC⊥OD;
          (2)在△ACB中,BC=4cm且OD是中位線,根據(jù)三角形的中位線定理,得OD=BC=2cm;
          (3)Rt△ADO中,利用正弦的定義結(jié)合OD=2cm,得到半徑OA=4cm,從而得到⊙O的直徑長(zhǎng).
          B:(1)根據(jù)直線的參數(shù)方程關(guān)于傾斜角的公式,得參數(shù)方程為 (t為參數(shù)),再化簡(jiǎn)整理即可;
          (2)將點(diǎn)(,)代入圓x2+y2=4的方程中,再化簡(jiǎn)整理得:t2=2,設(shè)方程的兩個(gè)根為 t1,t2,根據(jù)參數(shù)方程中t的幾何意義結(jié)合一元二次方程根與系數(shù)的關(guān)系,得到點(diǎn)P到A、B兩點(diǎn)的距離之積|t1||t2|=|t1t2|=2.
          解答:解:(A)(1)∵AB為⊙O的直徑,
          ∴∠C=90°,即AC⊥BC,又∵OD∥BC,
          ∴AC⊥OD…(3分)
          (2)∵O為AB中點(diǎn),OD∥BC
          ∴OD為△ACB的中位線
          ∴OD=BC=2cm…(6分)
          (3)∵2sinA-1=0,∴
          ∴Rt△ADO中,,
          又∵OD=2cm,
          ∴OA=4cm,
          因?yàn)榘霃降扔?cm,所以⊙O的直徑是8cm…(10分)
          (B)(1)由題意,可得直線的參數(shù)方程為 (t為參數(shù))
          整理得(t為參數(shù))…(3分)
          (2)把代入圓x2+y2=4的方程中,得
          整理得:t2=2,設(shè)方程的兩個(gè)根為 t1,t2,則…(7分)
          由參數(shù)方程中t的幾何意義可知|t1|,|t2|即為點(diǎn)P到A、B兩點(diǎn)的距離,
          ∴點(diǎn)P到A、B兩點(diǎn)的距離之積|t1||t2|=|t1t2|=2…(10分)
          點(diǎn)評(píng):本題第一問給出一個(gè)平面幾何證明問題,著重考查了圓有關(guān)的比例線段和三角函數(shù)在直角三角形中的定義;第二問結(jié)合直線方程的參數(shù)方程形式,著重考查了直線的基本量與基本形式和參數(shù)方程中參數(shù)的意義等知識(shí)點(diǎn),都屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)上的三點(diǎn),,BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,已知以點(diǎn)A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn),直線l與l1相交于點(diǎn)P.
          (1)求圓A的方程;
          (2)當(dāng)|MN|=2
          19
          時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          水平放置的△ABC的斜二測(cè)直觀圖如圖所示,已知A′C′=3,B′C′=2,則AB邊上的中線的實(shí)際長(zhǎng)度為
          5
          2
          5
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,已知A(4,0)、B(0,4),從點(diǎn)P(2,0)射出的光線經(jīng)直線AB反射后再射到直線OB上,最后經(jīng)直線OB反射后又回到P點(diǎn),則光線所經(jīng)過的路程是
          2
          10
          2
          10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•崇文區(qū)二模)如圖所示,已知A(-1,0),B(1,0),直線l垂直AB于A點(diǎn),P為l上一動(dòng)點(diǎn),點(diǎn)N為線段BP上一點(diǎn),且滿足
          BP
          =2
          BN
          ,點(diǎn)M滿足
          PM
          AB
          (λ>0),
          MN
          BP
          =0.
          (Ⅰ)求動(dòng)點(diǎn)M的軌跡方程C;
          (Ⅱ)在上述曲線C內(nèi)是否存在一點(diǎn)Q,若過點(diǎn)Q的直線與曲線C交于兩點(diǎn)E、F,使得以EF為直徑的圓都與l相切.若存在,求出點(diǎn)Q的坐標(biāo).若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案