日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
          (1)求證:AF∥平面BCE;
          (2)求證:平面BCE⊥平面CDE.

          【答案】
          (1)證明:取CE的中點(diǎn)G,連FG、BG.

          ∵F為CD的中點(diǎn),

          ∴GF∥DE且GF= DE.

          ∵AB⊥平面ACD,DE⊥平面ACD,

          ∴AB∥DE,∴GF∥AB.

          又AB= DE,∴GF=AB.

          ∴四邊形GFAB為平行四邊形,則AF∥BG.

          ∵AF平面BCE,BG平面BCE,

          ∴AF∥平面BCE.


          (2)證明:∵△ACD為等邊三角形,F(xiàn)為CD的中點(diǎn),

          ∴AF⊥CD.

          ∵DE⊥平面ACD,AF平面ACD,

          ∴DE⊥AF.

          又CD∩DE=D,故AF⊥平面CDE.

          ∵BG∥AF,

          ∴BG⊥平面CDE.

          ∵BG平面BCE,

          ∴平面BCE⊥平面CDE


          【解析】(1)取CE的中點(diǎn)G,連結(jié)FG、BG.由已知條件推導(dǎo)出四邊形GFAB為平行四邊形,由此能證明AF∥平面BCE.(2)由等邊三角形性質(zhì)得AF⊥CD,由線面垂直得DE⊥AF,從而AF⊥平面CDE,由平行線性質(zhì)得BG⊥平面CDE,由此能證明平面BCE⊥平面CDE
          【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和平面與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有三支股票, , ,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人數(shù)是持有股票的人數(shù)的2倍.在持有股票的人中,只持有股票的人數(shù)比除了持有股票外,同時(shí)還持有其它股票的人數(shù)多1.在只持有一支股票的人中,有一半持有股票.則只持有股票的股民人數(shù)是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問(wèn)題,父母親為嬰兒選擇什么品牌的奶粉一直以來(lái)都是育嬰中的一個(gè)重要話題,為了解過(guò)程奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

          (1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;

          (2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號(hào)內(nèi);

          (3)試以(2)中的百分比作為概率,若隨機(jī)選取2名購(gòu)買這5個(gè)品牌中任意1個(gè)品牌的消費(fèi)者進(jìn)行采訪,記為被采訪中購(gòu)買飛鶴奶粉的人數(shù),求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在棱臺(tái)中, 分別是棱長(zhǎng)為1與2的正三角形,平面平面,四邊形為直角梯形, , , 中點(diǎn), ).

          (1)設(shè)中點(diǎn)為, ,求證: 平面;

          (2)若到平面的距離為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】己知在平面直角坐標(biāo)系,的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過(guò)點(diǎn)的圓心.

          (1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;

          (2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點(diǎn),F在棱AC上,且AF=3FC

          (1)求三棱錐D-ABC的體積

          (2)求證:平面DAC⊥平面DEF;

          (3)若MDB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4 坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

          (1)寫出的極坐標(biāo)方程,并將化為普通方程;

          (2)若直線的極坐標(biāo)方程為相交于兩點(diǎn),

          的面積(為圓的圓心).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算下面各題
          (1)求過(guò)點(diǎn)A(2,3),且垂直于直線3x+2y﹣1=0的直線方程;
          (2)已知直線l過(guò)原點(diǎn),且點(diǎn)M(5,0)到直線l的距離為3,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線)與軸交于點(diǎn),動(dòng)圓與直線相切,并且與圓相外切,

          1)求動(dòng)圓的圓心的軌跡的方程;

          2)若過(guò)原點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),問(wèn)是否存在以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案